×

Deformations of spectral triples and their quantum isometry groups via monoidal equivalences. (English) Zbl 1367.58003

In this article, the author generalizes the deformation procedure through quantum group 2-cocycles which is a way to produce new spectral triples from a given one. The procedure is based on the notion of monoidal equivalence of (some subgroup of) its quantum isometry group. The generalized procedure here leads to examples that cannot be obtained by 2-cocycle deformations.

MSC:

58B34 Noncommutative geometry (à la Connes)
46L65 Quantizations, deformations for selfadjoint operator algebras
81R15 Operator algebra methods applied to problems in quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Baaj, S., Skandalis, G.: Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres. Ann. Scient. Ec. Norm. Sup. 4, 425-488 (1993) · Zbl 0804.46078
[2] Banica, T.: Theorie des representations du groupe quantique compact libre O(n). C.R. Acad. Sci. Paris Sér. I Math. 322, 241-244 (1996) · Zbl 0862.17010
[3] Bédos, E., Murphy, G., Tuset, L.: Co-amenability of compact quantum groups. J. Geom. Phys. 40(2), 129-153 (2001) · Zbl 1011.46056 · doi:10.1016/S0393-0440(01)00024-9
[4] Bhowmick, J., Goswami, D.: Quantum group of orientation-preserving Riemannian isometries. J. Funct. Anal. 257(8), 2530-2572 (2009) · Zbl 1180.58005 · doi:10.1016/j.jfa.2009.07.006
[5] Bhowmick, J., Goswami, D.: Quantum isometry groups of the Podles spheres. J. Funct. Anal. 258(9), 2937-2960 (2010) · Zbl 1210.58005 · doi:10.1016/j.jfa.2010.02.009
[6] Bichon, J., De Rijdt, A., Vaes, S.: Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups. Commun. Math. Phys. 262(3), 703-728 (2005) · Zbl 1122.46046 · doi:10.1007/s00220-005-1442-2
[7] Boca, F.: Ergodic actions of compact matrix pseudogroups on C*-algebras. Astérisque 232, 93-109 (1995) · Zbl 0842.46039
[8] Connes, A.: Noncommutative Geometry. Academic Press, San Diego (1994) · Zbl 0818.46076
[9] Connes, A., Landi, G.: Noncommutative manifolds the instanton algebra and isospectral deformations. Commun. Math. Phys. 159, 20 (2000) · Zbl 0997.81045
[10] Dabrowski, L., D’Andrea, F., Landi, G., Wagner, E.: Dirac operators on all Podles quantum spheres. J. Noncommut. Geometry 1(2), 213-239 (2007) · Zbl 1121.58008
[11] De Rijdt, A., Vander Vennet, N.: Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries. Annales de L’Institut Fourier 60(1), 169-216 (2010) · Zbl 1331.46063 · doi:10.5802/aif.2520
[12] Goswami, D.: Twisted entire cyclic cohomology, J-L-O cocycles and equivariant spectral triples. Rev. Math. Phys. 16(5), 583-602 (2004). doi:10.1142/S0129055X04002114 · Zbl 1062.58011
[13] Goswami, D.: Quantum group of isometries in classical and noncommutative geometry. Commun. Math. Phys. 285(1), 141-160 (2009) · Zbl 1228.81188 · doi:10.1007/s00220-008-0461-1
[14] Goswami, D., Joardar, S.: Quantum isometry groups of noncommutative manifolds obtained by deformation using dual unitary 2-cocycles. SIGMA Symmetry Integr. Geom. Methods Appl. 10, 076 (2014) · Zbl 1297.58004
[15] Maes, A., Van Daele, A.: Notes on compact quantum groups. Nieuw Arch. Wisk. IV. 16(1-2), 73-112 (1998) · Zbl 0962.46054
[16] Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995) · Zbl 0857.17009 · doi:10.1017/CBO9780511613104
[17] Podleś, P.: Quantum spheres. Lett. Math. Phys. 14(3), 193-202 (1987) · Zbl 0634.46054 · doi:10.1007/BF00416848
[18] Podleś, P.: Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups. Commun. Math. Phys. 170(1), 1-20 (1995) · Zbl 0853.46074 · doi:10.1007/BF02099436
[19] Schauenburg, P.: Hopf-Galois and Bi-Galois extensions. Fields Inst. Commun. 34, 469-515 (2004) · Zbl 1091.16023
[20] Van Daele, A.: Discrete quantum groups. J. Algebra 180(2), 431-444 (1996) · Zbl 0864.17012 · doi:10.1006/jabr.1996.0075
[21] Van Daele, A., Wang, S.: Universal quantum groups. Int. J. Math. 7(2), 255-263 (1996). doi:10.1142/S0129167X96000153 · Zbl 0870.17011
[22] Wang, S.: Free products of compact quantum groups. Commun. Math. Phys. 692, 671-692 (1995) · Zbl 0838.46057 · doi:10.1007/BF02101540
[23] Wang, S.: Simple compact quantum groups I. J. Funct. Anal. 256(10), 3313-3341 (2009) · Zbl 1176.46063 · doi:10.1016/j.jfa.2008.10.020
[24] Woronowicz, S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111(4), 613-665 (1987) · Zbl 0627.58034 · doi:10.1007/BF01219077
[25] Woronowicz, S.L.: Twisted SU(2) group. An example of a non-commutative differential calculus. Publ. RIMS Kyoto Univ. 23, 117-181 (1987) · Zbl 0676.46050 · doi:10.2977/prims/1195176848
[26] Woronowicz, S.L.: Compact quantum groups. In: Symétries quantiques (Les Houches, 1995), vol. 64, pp. 845-884 · Zbl 0997.46045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.