Some nonlinear internal equatorial flows. (English) Zbl 1367.35182

Summary: We present an exact solution of the nonlinear governing equations for geophysical water waves in the \({\beta}\)-plane approximation near the equator.


35Q86 PDEs in connection with geophysics
86A05 Hydrology, hydrography, oceanography
35C05 Solutions to PDEs in closed form
35Q31 Euler equations
35Q35 PDEs in connection with fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
Full Text: DOI


[1] Constantin, A., An exact solution for equatorially trapped waves, J. Geophys. Res., 117, C05029, (2012)
[2] Constantin, A.; Germain, P., Instability of some equatorially trapped waves, J. Geophys. Res., 118, (2013)
[3] Henry, D., An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids, 38, 18-21, (2013) · Zbl 1297.86002
[4] Constantin, A., Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanogr., 43, 165-175, (2013)
[5] Philander, S. G.H., The equatorial undercurrent revisited, Annu. Rev. Earth Planet. Sci., 8, 191-204, (1980)
[6] Constantin, A., Some nonlinear, equatorially trapped, non-hydrostatic, internal geophysical waves, J. Phys. Oceanogr., (2014)
[7] Pedlosky, J., Geophysical fluid dynamics, 742, (1979), Springer · Zbl 0429.76001
[8] Vallis, G. K., Atmospheric and oceanic fluid dynamics, 772, (1979), Cambridge Univ. Press
[9] Cushman-Roisin, B.; Beckers, J.-M., Introduction to geophysical fluid dynamics, 320, (2011), Academic Press
[10] Fedorov, A. V.; Brown, J. N., Equatorial waves, (Steele, J., Encyclopedia of Ocean Sciences, (2009), Academic Press), 3679-3685
[11] Gerstner, F., Theorie der wellen samt einer daraus abgeleiteten theorie der deichprofile, Ann. Phys., 2, 412-445, (1809), (in German)
[12] Constantin, A., On the deep water wave motion, J. Phys., 34A, 1405-1417, (2001) · Zbl 0982.76015
[13] Henry, D., On gerstner’s water wave, J. Nonlinear Math. Phys., 15, 87-95, (2008) · Zbl 1362.76009
[14] Constantin, A., (Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 81, (2011), SIAM Philadeplhia, PA), 321 · Zbl 1266.76002
[15] Constantin, A., The trajectories of particles in Stokes waves, Invent. Math., 166, 523-535, (2006) · Zbl 1108.76013
[16] Henry, D., On the deep-water Stokes flow, Int. Math. Res. Not., 22, (2008) · Zbl 1245.76008
[17] Constantin, A.; Strauss, W., Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 53, 533-557, (2010) · Zbl 1423.76061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.