×

zbMATH — the first resource for mathematics

A fast relaxed normal two split method and an effective weighted TV approach for Euler’s elastica image inpainting. (English) Zbl 1366.94075

MSC:
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
90C26 Nonconvex programming, global optimization
Software:
RecPF
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. Arias, V. Caselles, and G. Sapiro, A variational framework for non-local image inpainting, in Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Comput. Sci. 5681, Springer, New York, 2009, pp. 345–358.
[2] J.-F. Aujol, S. Ladjal, and S. Masnou, Exemplar-based inpainting from a variational point of view, SIAM J. Math. Anal., 42 (2010), pp. 1246–1285. · Zbl 1210.49002
[3] D. Auroux and M. Masmoudi, A one-shot inpainting algorithm based on the topological asymptotic analysis, Comput. Appl. Math., 25 (2006), pp. 251–267. · Zbl 1182.94006
[4] E. Bae, J. Shi, and X.-C. Tai, Graph cuts for curvature based image denoising, IEEE Trans. Image Process., 20 (2011), pp. 1199–1210. · Zbl 1372.94015
[5] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. J. Verdera, Filling-in by joint interpolation of vector fields and gray levels, IEEE Trans. Image Process., 10 (2001), pp. 1200–1211. · Zbl 1037.68771
[6] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, Image inpainting, in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 2000, pp. 417–424.
[7] A. Bertozzi, S. Esedoglu, and A. Gillette, Analysis of a two-scale Cahn-Hilliard model for binary image inpainting, Multiscale Model. Simul., 6 (2007), pp. 913–936. · Zbl 1149.35309
[8] A. Bertozzi, S. Esedoglu, and A. Gillette, Inpainting of binary images using the Cahn-Hilliard equation, IEEE Trans. Image Process., 16 (2007), pp. 285–291. · Zbl 1279.94008
[9] F. Bornemann and T. März, Fast image inpainting based on coherence transport, J. Math. Imaging Vision, 28 (2007), pp. 259–278.
[10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Machine Learning, 3 (2010), pp. 1–122. · Zbl 1229.90122
[11] K. Bredies, T. Pock, and B. Wirth, A convex, lower semi-continuous approximation of Euler’s elastica energy, SIAM J. Math. Anal., 47 (2015), pp. 566–613. · Zbl 1319.49018
[12] C. Brito-Loeza and K. Chen, Fast numerical algorithms for Euler’s elastica inpainting model, Int. J. Modern Math., 2 (2010), pp. 157–182. · Zbl 1205.68475
[13] M. Burger, L. He, and C. B. Schönlieb, Cahn-Hilliard inpainting and a generalization for grayvalue images, SIAM J. Imaging Sci., 2 (2009), pp. 1129–1167. · Zbl 1180.49007
[14] F. Cao, Y. Gousseau, S. Masnou, and P. Péres, Geometrically guided exemplar-based inpainting, SIAM J. Imaging Sci., 4 (2011), pp. 1143–1179. · Zbl 1235.94017
[15] T. Chan, S. H. Kang, and J. Shen, Euler’s elastica and curvature based inpaintings, SIAM J. Appl. Math., 63 (2002), pp. 564–592. · Zbl 1028.68185
[16] T. Chan and J. Shen, Non-texture inpainting by curvature-driven diffusion, J. Visual Commun. Image Representation, 12 (2001), pp. 436–449.
[17] T. Chan and J. Shen, Mathematical models for local non-texture inpaintings, SIAM J. Appl. Math., 62 (2002), pp. 1019–1043. · Zbl 1050.68157
[18] T. Chan and J. Shen, Variational image inpainting, Comm. Pure Appl. Math., 58 (2005), pp. 579–619. · Zbl 1067.68168
[19] T. Chan, J. Shen, and H. M. Zhou, Total variation wavelet inpainting, J. Math. Imaging Vision, 25 (2006), pp. 107–125.
[20] Y. Chen, W. W. Hager, M. Yashtini, X. Ye, and H. Zhang, Bregman operator splitting with variable stepsize for total variation image reconstruction, Comput. Optim. Appl., 54 (2013), pp. 317–342. · Zbl 1290.90071
[21] P. Combettes and V. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), pp. 1168–1200. · Zbl 1179.94031
[22] J. Dobrosotskaya and A. Bertozzi, A wavelet-Laplace variational technique for image deconvolution and inpainting, IEEE Trans. Image Process., 17 (2008), pp. 657–663.
[23] Y. Duan, Y. Wang, and J. Hahn, A fast augmented lagrangian method for Euler’s elastica models, Numer. Math. Theory Methods Appl., 6 (2013), pp. 47–71. · Zbl 1289.94006
[24] J. Eckstein and D. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55 (1992), pp. 293–318. · Zbl 0765.90073
[25] S. Esedoglu and R. March, Segmentation with depth but without detecting junctions, J. Math. Imaging Vision, 18 (2003), pp. 7–15. · Zbl 1033.68132
[26] S. Esedoglu and J. Shen, Digital inpainting based on the Mumford-Shah-Euler image model, European J. Appl. Math., 13 (2002), pp. 353–370. · Zbl 1017.94505
[27] L. Euler, Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, Lausanne, 1744. · Zbl 0788.01072
[28] M. J. Fadili, J. L. Starck, and F. Murtagh, Inpainting and zooming using sparse representations, Computer J., 52 (2009), pp. 64–79.
[29] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monogr. Math. 80, Birkhäuser Boston, Boston, MA, 1984. · Zbl 0545.49018
[30] R. Glowinski, T.-W. Pan, and X.-C. Tai, Some Facts About Operator-Splitting and Alternating Direction Methods, UCLA CAM Report 16–10, 2016. · Zbl 1372.65205
[31] B. Goldluecke and D. Cremers, Introducing total curvature for image processing, in Proceedings of the IEEE International Conference Computer Vision (ICCV), 2011, pp. 1267–1274,
[32] T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems, SIAM J. Imaging Sci., 2 (2009), pp. 323–343. · Zbl 1177.65088
[33] H. Grossauer and O. Scherzer, Using the complex Ginzburg-Landau equation for digital inpainting in 2D and 3D, in Scale Space Methods in Computer Vision, Lecture Notes in Comput. Sci. 2695, Springer, New York, 2003, pp. 225–236. · Zbl 1067.68739
[34] W. W. Hager, C. Ngo, M. Yashtini, and H. Zhang, Alternating direction approximate Newton (ADAN) algorithm for ill-conditioned inverse problems with application to Parallel MRI, J. Oper. Res. Soc. China, 3 (2015), pp. 139–162. · Zbl 1317.90235
[35] B. Horn, The curve of least energy, ACM Trans. Math. Software, 9 (1983), pp. 441–460. · Zbl 0533.41007
[36] M. Kallay, Plane curves of minimal energy, ACM Trans. Math. Software, 12 (1986), pp. 219–222. · Zbl 0624.73102
[37] M. Kallay, Method to approximate the space curve of least energy and prescribed length, Comput. Aided Design., 19 (1987), pp. 73–76. · Zbl 0655.65028
[38] S. H. Kang, W. Zhu, and J. Shen, Illusory shapes via corner fusion, SIAM J. Imaging Sci., 7 (2014), pp. 1907–1936. · Zbl 1320.68217
[39] F. Knoll, K. Bredies, and T. Pock, Second order total generalized variation (TGV) for MRI, Magnetic Resonance Medicine, 65 (2011), pp. 480–491.
[40] A. Marquina and S. Osher, A new time dependent model based on level set motion for nonlinear deblurring and noise removal, in Scale-Space Theories in Computer Vision, Lecture Notes in Comput. Sci. Springer, Berlin, 1999, pp. 429–434.
[41] S. Masnou and J.-M. Morel, On a variational theory of image amodal completion, Rend. Sem. Mat. Univ. Padova, 116 (2006), pp. 211–252. · Zbl 1150.49023
[42] S. Masnou and M. Morel, Level lines based disocclusion, in Proceedings of the International Conference on Image Processing, 1998, pp. 259–263.
[43] D. Mumford, Elastica and computer vision, Algebraic Geometry and its Applications, Springer, Berlin, 1994, pp. 491–506. · Zbl 0798.53003
[44] Y. E. Nesterov, A method for solving the convex programming problem with convergence rate \(\mathcal{O}(1/k^2)\) (in Russian), Dokl. Akad. Nauk SSSR, 269 (1983), pp. 543–547.
[45] M. Nitzberg, D. Mumford, and T. Shiota, Filtering, Segmentation, and Depth, Lecture Notes in Comput. Sci. 662, Springer-Verlag, Berlin, 1993.
[46] M. Oliveira, B. Bowen, R. Mckenna, and Y.-S. Chang, Fast digital image inpainting, in Proceedings of the International Conference on Visualization, Imaging and Image Processing (VIIP 2001), Marbella, Spain, 2001, pp. 106–107.
[47] K. Papafitsoros, C. B. Schöenlieb, and B. Sengul, Combined first and second order total variation inpainting using split Bregman, Image Processing On Line (2013), pp. 112–136.
[48] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970. · Zbl 0193.18401
[49] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), pp. 877–898. · Zbl 0358.90053
[50] T. Schoenemann, F. Kahl, S. Masnou, and D. Cremers, A linear framework for region based image segmentation and inpainting involving curvature penalization, Int. J. Comput. Vis., 99 (2012), pp. 53–68. · Zbl 1254.68282
[51] T. Schoenemann, S. Masnou, and D. Cremers, The elastica ratio: Introducing curvature into ratio-based image segmentation, IEEE Trans. Image Process., 20 (2011), pp. 2565–2581. · Zbl 1372.94227
[52] C.-B. Schönlieb and A. Bertozzi, Unconditionally stable schemes for higher order inpainting, Commun. Math. Sci., 9 (2011), pp. 413–457. · Zbl 1216.94016
[53] X.-C. Tai, J. Hahn, and G. J. Chung, A fast algorithm for Euler’s elastica model using augmented Lagrangian method, SIAM J. Imaging Sci., 4 (2011), pp. 313–344. · Zbl 1215.68262
[54] Y. Wang, J. Yang, W. Yin, and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), pp. 248–272. · Zbl 1187.68665
[55] C. Wu and X.-C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), pp. 300–339. · Zbl 1206.90245
[56] C. Wu, J. Zhang, and X.-C. Tai, Augmented Lagrangian method for total variation restoration with non-quadratic fidelity, Inverse Probl. Imaging, 5 (2011), pp. 237–261. · Zbl 1225.80013
[57] M. Yashtini and S. H. Kang, Alternating direction method of multiplier for Euler’s elastica-based denoising, Scale Space and Variational Methods in Computer Vision, Lecture Notes in Comput. Sci. 9087, Springer, New York, 2015, pp. 690–701.
[58] X. Zhang and T. F. Chan, Wavelet inpainting by nonlocal total variation, Inverse Probl. Imaging, 4 (2010), pp. 191–210. · Zbl 1185.42040
[59] W. Zhu, T. Chan, and S. Esedoglu, Segmentation with depth: A level set approach, SIAM J. Sci. Comput., 28 (2006), pp. 1957–1973. · Zbl 1344.68266
[60] W. Zhu, X.-C. Tai, and T. Chan, Augmented Lagrangian method for a mean curvature based image denoising model, Inverse Probl. Imaging, 7 (2013), pp. 1409–1432. · Zbl 1311.94015
[61] W. Zhu, X.-C. Tai, and T. Chan, Image segmentation using Euler’s elastica as the regularization, J. Sci. Comput., 57 (2013), pp. 414–438. · Zbl 1282.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.