×

zbMATH — the first resource for mathematics

A staggered semi-implicit spectral discontinuous Galerkin scheme for the shallow water equations. (English) Zbl 1366.76050
Summary: A spatially arbitrary high order, semi-implicit spectral discontinuous Galerkin (DG) scheme for the numerical solution of the shallow water equations on staggered control volumes is derived and discussed. The free surface elevation and the momentum are expressed in terms of the same polynomials that are used as basis, and as test functions. Each unknown is, however, defined on a different set of control volumes that are spatially staggered with respect to each other. A semi-implicit time integration yields a stable and efficient mass conservative algorithm. The use of a staggered mesh has the advantage that after substitution of the momentum equations into the mass conservation equation only one single block-penta-diagonal system must be solved for the new free surface location, which is a scalar quantity. Subsequently the new momentum components are directly obtained. The staggered semi-implicit approach makes the present DG scheme different from other published DG schemes. The sparse linear system of the resulting discrete wave equation for the free surface can be conveniently solved by a matrix-free GMRES algorithm. Furthermore, for the shallow water equations the proposed scheme can be written as a quadrature-free method, where all surface and volume integrals can be precomputed once and for all on the reference element and assembled into universal matrices and tensors. For the special case \(N = 0\) the proposed method reduces to a classical semi-implicit finite difference scheme. The proposed semi-implicit scheme is particularly well suited for low Froude number flows. The method is validated on some typical academic benchmark problems, using polynomial degrees of up to \(N = 20\).

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76M22 Spectral methods applied to problems in fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alcrudo, F.; Benkhaldoun, F., Exact solutions to the Riemann problem of the shallow water equations with a bottom step, Computers and Fluids, 30, 643-671, (2001) · Zbl 1048.76008
[2] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM Journal on Numerical Analysis, 39, 1749-1779, (2002) · Zbl 1008.65080
[3] T. Barth, P. Charrier, Energy stable flux formulas for the discontinuous Galerkin discretization of first-order nonlinear conservation laws, Technical Report NAS-01-001, NASA, 2001.
[4] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, Journal of Computational Physics, 131, 267-279, (1997) · Zbl 0871.76040
[5] Bermúdez, A.; Vázquez, M. E., Upwind methods for hyperbolic conservation laws with source terms, Computers and Fluids, 23, 1049-1071, (1994) · Zbl 0816.76052
[6] Bernetti, R.; Titarev, V. A.; Toro, E. F., Exact solution of the Riemann problem for the shallow water equations with discontinuous bottom geometry, Journal of Computational Physics, 227, 3212-3243, (2008) · Zbl 1132.76027
[7] Bonaventura, L.; Iske, A.; Miglio, E., Kernel-based vector field reconstruction in computational fluid dynamic models, International Journal for Numerical Methods in Fluids, 66, 714-729, (2011) · Zbl 1446.76127
[8] W. Boscheri, M. Dumbser, M. Righetti, A semi-implicit scheme for 3D free surface flows with high order velocity reconstruction on unstructured Voronoi meshes, International Journal for Numerical Methods in Fluids, in press, doi:http://dx.doi.org/10.1002/fld.3753.
[9] Brugnano, L.; Casulli, V., Iterative solution of piecewise linear systems, SIAM Journal on Scientific Computing, 30, 463-472, (2008) · Zbl 1155.90457
[10] Brugnano, L.; Casulli, V., Iterative solution of piecewise linear systems and applications to flows in porous media, SIAM Journal on Scientific Computing, 31, 1858-1873, (2009) · Zbl 1190.90233
[11] Brugnano, L.; Sestini, A., Iterative solution of piecewise linear systems for the numerical solution of obstacle problems, Journal of Numerical Analysis, Industrial and Applied Mathematics, 6, 67-82, (2012) · Zbl 1432.65079
[12] Castro, M. J.; Gallardo, J. M.; Parés, C., High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. applications to shallow-water systems, Mathematics of Computations, 75, 1103-1134, (2006) · Zbl 1096.65082
[13] Casulli, V., Semi-implicit finite difference methods for the two-dimensional shallow water equations, Journal of Computational Physics, 86, 56-74, (1990) · Zbl 0681.76022
[14] Casulli, V., A semi-implicit finite difference method for non-hydrostatic free-surface flows, International Journal for Numerical Methods in Fluids, 30, 425-440, (1999) · Zbl 0944.76050
[15] Casulli, V., A high-resolution wetting and drying algorithm for free-surface hydrodynamics, International Journal for Numerical Methods in Fluids, 60, 391-408, (2009) · Zbl 1161.76034
[16] Casulli, V.; Cattani, E., Stability, accuracy and efficiency of a semi-implicit method for three-dimensional shallow water flow, Computers & Mathematics with Applications, 27, 99-112, (1994) · Zbl 0796.76052
[17] Casulli, V.; Cheng, R. T., Semi-implicit finite difference methods for three-dimensional shallow water flow, International Journal for Numerical Methods in Fluids, 15, 629-648, (1992) · Zbl 0762.76068
[18] Casulli, V.; Dumbser, M.; Toro, E. F., Semi-implicit numerical modeling of axially symmetric flows in compliant arterial systems, International Journal for Numerical Methods in Biomedical Engineering, 28, 257-272, (2012) · Zbl 1242.92019
[19] Casulli, V.; Stelling, G. S., Semi-implicit subgrid modelling of three-dimensional free-surface flows, International Journal for Numerical Methods in Fluids, 67, 441-449, (2011) · Zbl 1316.76018
[20] Casulli, V.; Walters, R. A., An unstructured grid, three-dimensional model based on the shallow water equations, International Journal for Numerical Methods in Fluids, 32, 331-348, (2000) · Zbl 0965.76061
[21] Casulli, V.; Zanolli, P., Semi-implicit numerical modeling of nonhydrostatic free-surface flows for environmental problems, Mathematical and Computer Modelling, 36, 1131-1149, (2002) · Zbl 1027.76034
[22] Chung, E. T.; Lee, C. S., A staggered discontinuous Galerkin method for the convection-diffusion equation, Journal of Numerical Mathematics, 20, 1-31, (2012) · Zbl 1300.65065
[23] Cockburn, B.; Hou, S.; Shu, C. W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Mathematics of Computation, 54, 545-581, (1990) · Zbl 0695.65066
[24] Cockburn, B.; Karniadakis, G. E.; Shu, C. W., Discontinuous Galerkin Methods, Lecture Notes in Computational Science and Engineering, (2000), Springer
[25] Cockburn, B.; Lin, S. Y.; Shu, C. W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, Journal of Computational Physics, 84, 90-113, (1989) · Zbl 0677.65093
[26] Cockburn, B.; Shu, C. W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Mathematics of Computation, 52, 411-435, (1989) · Zbl 0662.65083
[27] Cockburn, B.; Shu, C. W., The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws, Mathematical Modelling and Numerical Analysis, 25, 337-361, (1991) · Zbl 0732.65094
[28] Cockburn, B.; Shu, C. W., The local discontinuous Galerkin method for time-dependent convection diffusion systems, SIAM Journal on Numerical Analysis, 35, 2440-2463, (1998) · Zbl 0927.65118
[29] Cockburn, B.; Shu, C. W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, Journal of Computational Physics, 141, 199-224, (1998) · Zbl 0920.65059
[30] Cockburn, B.; Shu, C. W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, Journal of Scientific Computing, 16, 173-261, (2001) · Zbl 1065.76135
[31] Comblen, R.; Lambrechts, J.; Remacle, J. F.; Legat, V., Practical evaluation of five partly discontinuous finite element pairs for the non-conservative shallow water equations, International Journal for Numerical Methods in Fluids, 63, 701-724, (2010) · Zbl 1423.76220
[32] Courant, R.; Isaacson, E.; Rees, M., On the solution of nonlinear hyperbolic differential equations by finite differences, Communications on Pure and Applied Mathematics, 5, 243-255, (1952) · Zbl 0047.11704
[33] Dolejsi, V., Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows, Communications in Computational Physics, 4, 231-274, (2008) · Zbl 1364.76085
[34] Dolejsi, V.; Feistauer, M., A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow, Journal of Computational Physics, 198, 727-746, (2004) · Zbl 1116.76386
[35] Dolejsi, V.; Feistauer, M.; Hozman, J., Analysis of semi-implicit DGFEM for nonlinear convection-diffusion problems on nonconforming meshes, Computer Methods in Applied Mechanics and Engineering, 196, 2813-2827, (2007) · Zbl 1121.76033
[36] Dumbser, M., A simple two-phase method for the simulation of complex free surface flows, Computer Methods in Applied Mechanics and Engineering, 200, 1204-1219, (2011) · Zbl 1225.76210
[37] Dumbser, M.; Castro, M.; Parés, C.; Toro, E. F., ADER schemes on unstructured meshes for non-conservative hyperbolic systems: applications to geophysical flows, Computers and Fluids, 38, 1731-1748, (2009) · Zbl 1177.76222
[38] Dumbser, M.; Enaux, C.; Toro, E. F., Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, Journal of Computational Physics, 227, 3971-4001, (2008) · Zbl 1142.65070
[39] Dumbser, M.; Hidalgo, A.; Castro, M.; Parés, C.; Toro, E. F., FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems, Computer Methods in Applied Mechanics and Engineering, 199, 625-647, (2010) · Zbl 1227.76043
[40] Dumbser, M.; Munz, C. D., Building blocks for arbitrary high order discontinuous Galerkin schemes, Journal of Scientific Computing, 27, 215-230, (2006) · Zbl 1115.65100
[41] Dumbser, M.; Toro, E. F., On universal osher-type schemes for general nonlinear hyperbolic conservation laws, Communications in Computational Physics, 10, 635-671, (2011) · Zbl 1373.76125
[42] Dumbser, M.; Toro, E. F., A simple extension of the osher Riemann solver to non-conservative hyperbolic systems, Journal of Scientific Computing, 48, 70-88, (2011) · Zbl 1220.65110
[43] Giraldo, F. X.; Hesthaven, J. S.; Warburton, T., High-order discontinuous Galerkin methods for the spherical shallow water equations, Journal of Computational Physics, 181, 499-525, (2002) · Zbl 1178.76268
[44] Giraldo, F. X.; Restelli, M., High-order semi-implicit time-integrators for a triangular discontinuous Galerkin oceanic shallow water model, International Journal for Numerical Methods in Fluids, 63, 1077-1102, (2010) · Zbl 1267.76010
[45] Gosse, L., A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms, Computers & Mathematics with Applications, 39, 135-159, (2000) · Zbl 0963.65090
[46] Gosse, L., A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms, Mathematical Models and Methods in Applied Sciences, 11, 339-365, (2001) · Zbl 1018.65108
[47] Greenberg, J. M.; Le Roux, A. Y., A wellbalanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM Journal on Numerical Analysis, 33, 1-16, (1996) · Zbl 0876.65064
[48] Hidalgo, A.; Dumbser, M., ADER schemes for nonlinear systems of stiff advection-diffusion-reaction equations, Journal of Scientific Computing, 48, 173-189, (2011) · Zbl 1221.65231
[49] Hou, S.; Liu, X. D., Solutions of multi-dimensional hyperbolic systems of conservation laws by square entropy condition satisfying discontinuous Galerkin method, Journal of Scientific Computing, 31, 127-151, (2007) · Zbl 1152.76433
[50] Iske, A.; Käser, M., Conservative semi-Lagrangian advection on adaptive unstructured meshes, Numerical Methods for Partial Differential Equations, 20, 388-411, (2004) · Zbl 1048.65084
[51] Jiang, G.; Shu, C. W., On a cell entropy inequality for discontinuous Galerkin methods, Mathematics of Computation, 62, 531-538, (1994) · Zbl 0801.65098
[52] Klaij, C.; Van der Vegt, J. J.W.; Van der Ven, H., Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations, Journal of Computational Physics, 217, 589-611, (2006) · Zbl 1099.76035
[53] Kramer, S. C.; Stelling, G. S., A conservative unstructured scheme for rapidly varied flows, International Journal for Numerical Methods in Fluids, 58, 183-212, (2008) · Zbl 1178.76248
[54] Lentine, M.; Grétarsson, J. T.; Fedkiw, R., An unconditionally stable fully conservative semi-Lagrangian method, Journal of Computational Physics, 230, 2857-2879, (2011) · Zbl 1316.76076
[55] LeVeque, R. J., Balancing source terms and flux gradients in high resolution Godunov methods, Journal of Computational Physics, 146, 346-365, (1998) · Zbl 0931.76059
[56] LeVeque, R. J., Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave propagation algorithm, Journal of Computational Physics, 146, 346-365, (1998) · Zbl 0931.76059
[57] Levy, D.; Shu, C. W.; Yan, J., Local discontinuous Galerkin methods for nonlinear dispersive equations, Journal of Computational Physics, 196, 751-772, (2004) · Zbl 1055.65109
[58] Liu, Y. J.; Shu, C. W.; Tadmor, E.; Zhang, M., Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction, SIAM Journal on Numerical Analysis, 45, 2442-2467, (2007) · Zbl 1157.65450
[59] Liu, Y. J.; Shu, C. W.; Tadmor, E.; Zhang, M., L2-stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods, Mathematical Modeling and Numerical Analysis, 42, 593-607, (2008) · Zbl 1152.65095
[60] Dal Maso, G.; LeFloch, P. G.; Murat, F., Definition and weak stability of nonconservative products, Journal de Mathématiques Pures et Appliquées, 74, 483-548, (1995) · Zbl 0853.35068
[61] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM Journal on Numerical Analysis, 44, 300-321, (2006) · Zbl 1130.65089
[62] Qiu, J.; Dumbser, M.; Shu, C. W., The discontinuous Galerkin method with Lax-Wendroff type time discretizations, Computer Methods in Applied Mechanics and Engineering, 194, 4528-4543, (2005) · Zbl 1093.76038
[63] Qiu, J. M.; Shu, C. W., Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow, Journal of Computational Physics, 230, 863-889, (2011) · Zbl 1391.76489
[64] W.H. Reed, T.R. Hill, Triangular mesh methods for neutron transport equation, Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.
[65] Restelli, M.; Bonaventura, L.; Sacco, R., A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows, Journal of Computational Physics, 216, 195-215, (2006) · Zbl 1090.76045
[66] Rhebergen, S.; Bokhove, O.; van der Vegt, J. J.W., Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations, Journal of Computational Physics, 227, 1887-1922, (2008) · Zbl 1153.65097
[67] Rusanov, V. V., The calculation of the interaction of non-stationary shock waves with obstacles, USSR Computational Mathematics and Mathematical Physics, 1, 304-320, (1962)
[68] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7, 856-869, (1986) · Zbl 0599.65018
[69] Stelling, G. S.; Duynmeyer, S. P.A., A staggered conservative scheme for every Froude number in rapidly varied shallow water flows, International Journal for Numerical Methods in Fluids, 43, 1329-1354, (2003) · Zbl 1062.76541
[70] Stroud, A. H., Approximate calculation of multiple integrals, (1971), Prentice-Hall Inc. Englewood Cliffs, New Jersey · Zbl 0379.65013
[71] Shock-Capturing Methods for Free-Surface Shallow Flows, E. F. Toro, (2001), Wiley
[72] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics, (2009), Springer · Zbl 1227.76006
[73] Tumolo, G.; Bonaventura, L.; Restelli, M., A semi-implicit, semi-Lagrangian, p-adaptive discontinuous Galerkin method for the shallow water equations, Journal of Computational Physics, 232, 46-67, (2013) · Zbl 1291.65305
[74] van der Vegt, J. J.W.; van der Ven, H., Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows I. general formulation, Journal of Computational Physics, 182, 546-585, (2002) · Zbl 1057.76553
[75] van der Ven, H.; van der Vegt, J. J.W., Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows II. efficient flux quadrature, Comput. Methods Appl. Mech. Eng., 191, 4747-4780, (2002) · Zbl 1099.76521
[76] Walters, R. A.; Casulli, V., A robust finite element model for hydrostatic surface water flows, Communications in Numerical Methods in Engineering, 14, 931-940, (1998) · Zbl 0915.76056
[77] Xing, Y.; Shu, C. W., High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms, Journal of Computational Physics, 214, 567-598, (2006) · Zbl 1089.65091
[78] Yan, J.; Shu, C. W., A local discontinuous Galerkin method for KdV-type equations, SIAM Journal on Numerical Analysis, 40, 769-791, (2002) · Zbl 1021.65050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.