×

Nonparametric method for estimating the distribution of time to failure of engineering materials. (English) Zbl 1366.62070

Cao, Ricardo (ed.) et al., Nonparametric statistics. 2nd ISNPS, Cádiz, June 2014. Selected papers based on the presentations at the second conference of the International Society for Nonparametric Statistic, ISNPS, Cádiz, Spain, June 12–16, 2014. Cham: Springer (ISBN 978-3-319-41581-9/hbk; 978-3-319-41582-6/ebook). Springer Proceedings in Mathematics & Statistics 175, 211-224 (2016).
Summary: The aim of this work is to develop and assess a new method to estimate lifetime distribution in materials subjected to mechanical fatigue efforts. This problem is addressed from a statistical semiparametric and nonparametric perspective. Taking into account that fatigue failures in materials are due to crack formation and the subsequently induced crack growth, linear mixed effects regression models with smoothing splines (based on the linearized Paris-Erdogan model) are applied to estimate crack length as a function of the number of fatigue cycles. This model allows to simultaneously estimate the dependence between crack length and number of cycles in a sample of specimens. Knowing the crack length that induces material failure, the lifetime of each specimen is the crossing point of the crack length limit and the model crack length estimate. The authors propose to estimate the lifetime distribution function by applying nonparametric kernel techniques. In order to assess the influence of factors such as material type, material heterogeneity, and also that of the parameters of the estimation procedure, a simulation study consisting of different scenarios is performed. The results are compared with those of a procedure proposed by W. Q. Meeker and L. A. Escobar [Statistical methods for reliability data. New York, NY: Wiley (1998; Zbl 0949.62086)] based on nonlinear mixed effects regression. Functional data analysis techniques are applied to perform this task. The proposed methodology estimates lifetime distribution of materials under fatigue more accurately in a wide range of scenarios.
For the entire collection see [Zbl 1353.62010].

MSC:

62P30 Applications of statistics in engineering and industry; control charts
62N05 Reliability and life testing
62G05 Nonparametric estimation

Citations:

Zbl 0949.62086
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Atluri, S.N., Han, Z.D., Rajendran, A.M.: A new implementation of the meshless finite volume method, through the MLPG ”mixed” approach. Comput. Model. Eng. Sci. 6, 491–514 (2004) · Zbl 1151.74424
[2] Box, G.E., Hunter, J.H., Hunter, W.G.: Statistics for Experimenters: Design, Innovation, and Discovery. Wiley (2005) · Zbl 1082.62063
[3] Braz, M.H.P.: Propriedades de Fadiga de Soldas de Alta Resistência e Baixa Liga com Diferentes Composições Microestruturais. Tese de M. Sc, USP, So Carlos, SP, Brasil (1999)
[4] Callister, W., Rethwisch, D.G.: Materials Science and Engineering: an Introduction, 9th edn. Wiley (2013)
[5] Campbell, F.C.: Elements of Metallurgy and Engineering Alloys. ASM International (2008)
[6] Cuevas, A., Febrero, M., Fraiman, R.: On the use of the bootstrap for estimating functions with functional data. Comput. Stat. Data Anal. 51, 1063–1074 (2006) · Zbl 1157.62390 · doi:10.1016/j.csda.2005.10.012
[7] Donahue, R.J., Clark, H.M., Atanmo, P., Kumble, R., McEvily, A.J.: Crack opening displacement and the rate of fatigue crack growth. Int. J. Fract.Mech. 8, 209–219 (1972) · doi:10.1007/BF00703882
[8] Dong, L., Haynes, R., Atluri, S.N.: On improving the celebrated Paris’ power law for fatigue, by using moving least squares. CMC-Comput. Mater. Con. 45, 1–15 (2015)
[9] Dowling, N.E.: Mechanical Behavior of Materials, Engineering Methods for Deformation, Fracture and Fatigue, Pearson Prentice Hall (2012)
[10] Faraway, J.J.: Extending the Linear Model with R. Generalized Linear, Mixed Effects and Nonparametric Regression Models. Chapman & Hall/CRC (2005) · Zbl 1095.62082
[11] Febrero-Bande, M., Oviedo de la Fuente, M.: Statistical computing in functional data analysis: the R package fda.usc. J. Stat. Soft. 51, 1–28 (2012) · doi:10.18637/jss.v051.i04
[12] FKM-Guideline: Fracture Mechanics Proof of Strength for Engineering Components (2004)
[13] Forman, R.G., Kearney, V.E., Engle, R.M.: Numerical analysis of crack propagation in cyclic-loaded structures. J. Basic Eng. 89, 459–463 (1967) · doi:10.1115/1.3609637
[14] Jones, R.: Fatigue crack growth and damage tolerance. Fatigue Fract. Eng. Mater. Struct. 37, 463–483 (2014) · doi:10.1111/ffe.12155
[15] Meggiolaro, M.A., De Castro, J.T.P.: Equacionamento da curva de propagação de trincas por fadiga. III Seminário de Mecânica da Fratura/Integridade Estrutural (1997)
[16] Meeker, W., Escobar, L.: Statistical Methods for Reliability Data. Wiley (1998) · Zbl 0949.62086
[17] Montgomery, D.: Design and Analysis of Experiments, 8th edn. Wiley (2013)
[18] Montes, J., Cuevas, F., Cintas, J.: Ciencia e Ingeniería de los Materiales. Ediciones Paraninfo (2014)
[19] Paris, P.C., Erdogan, F.: A critical analysis of crack propagation laws. J. Basic Eng. 85, 528 (1963) · doi:10.1115/1.3656900
[20] Pinheiro, J.C., Bates, D.M.: Approximations to the loglikelihood function in the nonlinear mixed-effects model. J. Comput. Graph. Stat. 4, 12–35 (1995)
[21] Pinheiro, J.C., Bates, D.M.: Mixed-effects Models in S and S-plus. Springer (2000) · Zbl 0953.62065 · doi:10.1007/978-1-4419-0318-1
[22] Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team.: nlme: linear and nonlinear mixed effects Models (2014). R package version 3.1-116. http://CRAN.R-project.org/package=nlme
[23] Polansky, A.M., Baker, E.R.: Multistage plug-in bandwidth selection for kernel distribution function estimates. J. Stat. Comput. Simul. 65, 63–80 (2000) · Zbl 0957.62031 · doi:10.1080/00949650008811990
[24] Quintela-del-Rio, A., Estevez-Perez, G.: Nonparametric kernel distribution function estimation with kerdiest: an R package for bandwidth choice and applications. J. Stat. Softw. 50, 1–21 (2012) · doi:10.18637/jss.v050.i08
[25] Ramsey, J.: pspline: penalized smoothing splines (2013). R package version 1.0-16. http://CRAN.R-project.org/package=pspline
[26] Shariff, A.: Simulation of Paris-Erdogan crack propagation model with power value, m = 3: The impact of applying discrete values of stress range on the behaviour of damage and lifetime of structure. Asian J. Appl. Sci. 2, 91–95 (2009) · doi:10.3923/ajaps.2009.91.95
[27] Verbeke, G., Molenberghs, G.: Linear Mixed Models for Longitudinal Data. Springer (2009) · Zbl 1162.62070
[28] Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman & Hall/CRC (1995) · doi:10.1007/978-1-4899-4493-1
[29] Wang, K., Wang, F., Cui, W., Hayat, T., Ahmad, B.: Prediction of short fatigue crack growth of Ti-6Al-4V. Fatigue Fract. Eng. Mater. Struct. 37, 1075–1086 (2014) · doi:10.1111/ffe.12177
[30] Wood, S.N.: Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC (2006) · Zbl 1087.62082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.