×

On a Lotka-Volterra competition model: the effects of advection and spatial variation. (English) Zbl 1366.35088

The authors consider a one-dimensional Lotka-Volterra competition model including advection and allowing for an “heterogeneous environment”. The main effort is to understand the effects that advection (for one of the species) and spatial variation have on the (semi-trivial) steady states of the system.

MSC:

35K57 Reaction-diffusion equations
35K61 Nonlinear initial, boundary and initial-boundary value problems for nonlinear parabolic equations
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allan, J.D.: Stream Ecology: Structure and Function of Running Waters. Chapman & Hall, London (1995) · doi:10.1007/978-94-011-0729-7
[2] Averill, I., Lam, K.-Y., Lou, Y.: The role of advection in a two-species competition model: a bifurcation approach. Mem. Am. Math. Soc. (2014) (in press) · Zbl 1428.35001
[3] Belgacem, F., Cosner, C.: The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environments. Canad. Appl. Math. Q. 3, 379-397 (1995) · Zbl 0854.35053
[4] Cantrell, R.S., Cosner, C.: The effects of spatial heterogeneity in population dynamics. J. Math. Biol. 29, 315-338 (1991) · Zbl 0722.92018 · doi:10.1007/BF00167155
[5] Cantrell, R.S., Cosner, C.: Should a park be an island? SIAM J. Appl. Math. 53, 219-252 (1993) · Zbl 0811.92022 · doi:10.1137/0153014
[6] Cantrell, R.S., Cosner, C.: On the effects of spatial heterogeneity on the persistence of interacting species. J. Math. Biol. 37, 103-145 (1998) · Zbl 0948.92021 · doi:10.1007/s002850050122
[7] Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction-Diffusion Equations. John Wiley and Sons, Chichester (2003) · Zbl 1059.92051
[8] Cantrell, R.S., Cosner, C., Lou, Y.: Multiple reversals of competitive dominance in ecological reserves via external habitat degradation. J. Dyn. Differ. Equ. 16, 973-1010 (2004) · Zbl 1065.35140 · doi:10.1007/s10884-004-7831-y
[9] Cantrell, R.S., Cosner, C., Lou, Y.: Movement toward better environments and the evolution of rapid diffusion. Math. Biosci. 204, 199-214 (2006) · Zbl 1105.92036 · doi:10.1016/j.mbs.2006.09.003
[10] Cantrell, R.S., Cosner, C., Lou, Y.: Advection-mediated coexistence of competing species. Proc. R. Soc. Edinb. Sect. A 137, 497-518 (2007) · Zbl 1139.35048 · doi:10.1017/S0308210506000047
[11] Chen, X.F., Hambrock, R., Lou, Y.: Evolution of conditional dispersal: a reaction-diffusion-advection model. J. Math. Biol. 57, 361-386 (2008) · Zbl 1141.92040 · doi:10.1007/s00285-008-0166-2
[12] Chen, X.F., Lou, Y.: Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model. Indiana Univ. Math. J. 57, 627-658 (2008) · Zbl 1153.35056 · doi:10.1512/iumj.2008.57.3204
[13] Chen, X.F., Lou, Y.: Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications. Indiana Univ. Math. J. 61, 45-80 (2012) · Zbl 1316.35218 · doi:10.1512/iumj.2012.61.4518
[14] Cosner, C., Lou, Y.: Does movement toward better environments always benefit a population? J. Math. Anal. Appl. 277, 489-503 (2003) · Zbl 1015.92040 · doi:10.1016/S0022-247X(02)00575-9
[15] Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M.: The evolution of slow dispersal rates: a reaction-diffusion model. J. Math. Biol. 37, 61-83 (1998) · Zbl 0921.92021 · doi:10.1007/s002850050120
[16] Du, Y.: Effects of a degeneracy in the competition model, part II. Perturbation and dynamical behavior. J. Differ. Equ. 181, 133-164 (2002) · Zbl 1042.35017 · doi:10.1006/jdeq.2001.4075
[17] Du, Y.: Realization of prescribed patterns in the competition model. J. Differ. Equ. 193, 147-179 (2003) · Zbl 1274.35137 · doi:10.1016/S0022-0396(03)00056-1
[18] Du, Y., Hsu, S.-B.: Concentration phenomena in a nonlocal quasi-linear problem modeling phytoplankton: I. Existence. SIAM J. Math. Anal. 40, 1419-1440 (2008) · Zbl 1168.35347 · doi:10.1137/07070663X
[19] Du, Y., Hsu, S.-B.: Concentration phenomena in a nonlocal quasi-linear problem modeling phytoplankton: II. Limiting profile. SIAM J. Math. Anal. 40, 1441-1470 (2008) · Zbl 1168.35348 · doi:10.1137/070706641
[20] Du, Y., Hsu, S.-B.: On a nonlocal reaction-diffusion problem arising from the modeling phytoplankton growth. SIAM J. Math. Anal. 42, 1305-1333 (2010) · Zbl 1211.35261 · doi:10.1137/090775105
[21] Du, Y., Mei, L.F.: On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics. Nonlinearity 24, 319-349 (2011) · Zbl 1223.35063 · doi:10.1088/0951-7715/24/1/016
[22] Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001) · Zbl 1042.35002
[23] Hastings, A.: Spatial heterogeneity and ecological models. Ecology 71, 426-428 (1990) · doi:10.2307/1940296
[24] He, X., Ni, W.-M.: The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: heterogeneity vs. homogeneity. J. Differ. Equ. 254, 528-546 (2013) · Zbl 1262.35125 · doi:10.1016/j.jde.2012.08.032
[25] He, X., Ni, W.-M.: The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system II: the general case. J. Differ. Equ. 254, 4088-4108 (2013) · Zbl 1286.35128 · doi:10.1016/j.jde.2013.02.009
[26] He, X., Ni, W.-M.: Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity I. Commun. Pure. Appl. Math. 69, 981-1014 (2016) · Zbl 1338.92105 · doi:10.1002/cpa.21596
[27] Hess, P., Lazer, A.C.: On an abstract competition model and applications. Nonlinear Anal. T.M.A. 16, 917-940 (1991) · Zbl 0743.35033
[28] Holmes, E.E., Lewis, M.A., Banks, J.E., Veit, R.R.: Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75, 17-29 (1994) · doi:10.2307/1939378
[29] Hsu, S.-B., Smith, H., Waltman, P.: Competitive exclusion and coexistence for competitive systems on ordered Banach spaces. Trans. Am. Math. Soc. 348, 4083-4094 (1996) · Zbl 0860.47033 · doi:10.1090/S0002-9947-96-01724-2
[30] Hutson, V., Lou, Y., Mischaikow, K., Polác̆ik, P.: Competing species near the degenerate limit. SIAM J. Math. Anal. 35, 453-491 (2003) · Zbl 1043.35080
[31] Krein, M.G., Rutman, M.A.: Linear operators leaving invariant a cone in a Banach space. Uspekhi Mat. Nauk (N. S.) 3, 3-95 (1948) · Zbl 0030.12902
[32] Lam, K.-Y.: Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model. J. Differ. Equ. 250, 161-181 (2011) · Zbl 1219.35331 · doi:10.1016/j.jde.2010.08.028
[33] Lam, K.-Y.: Limiting profiles of semilinear elliptic equations with large advection in population dynamics II. SIAM J. Math. Anal. 44, 1808-1830 (2012) · Zbl 1247.35179 · doi:10.1137/100819758
[34] Lam, K.-Y., Lou, Y., Lutscher, F.: Evolution of dispersal in closed advective environments. J. Biol. Dyn. 9, 188-212 (2015) · Zbl 1448.92378 · doi:10.1080/17513758.2014.969336
[35] Lam, K.-Y., Munther, D.: A remark on the global dynamics of competitive systems on ordered Banach spaces. Proc. Am. Math. Soc. 144, 1153-1159 (2016) · Zbl 1337.47069 · doi:10.1090/proc12768
[36] Lam, K.-Y., Ni, W.-M.: Limiting profiles of semilinear elliptic equations with large advection in population dynamics. Discrete Contin. Dyn. Syst. A 28, 1051-1067 (2010) · Zbl 1193.35232 · doi:10.3934/dcds.2010.28.1051
[37] Lam, K.-Y., Ni, W.-M.: Uniqueness and complete dynamics in the heterogeneous competition-diffusion systems. SIAM J. Appl. Math. 72, 1695-1712 (2012) · Zbl 1263.35133 · doi:10.1137/120869481
[38] Lou, Y., Lutscher, F.: Evolution of dispersal in open advective environments. J. Math. Biol. 69, 1319-1342 (2014) · Zbl 1307.35144 · doi:10.1007/s00285-013-0730-2
[39] Lou, Y., Nagylaki, T.: Evolution of a semilinear parabolic system for migration and selection in population genetics. J. Differ. Equ. 204, 292-322 (2004) · Zbl 1065.35144 · doi:10.1016/j.jde.2004.01.009
[40] Lou, Y., Xiao, D.M., Zhou, P.: Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete Contin. Dyn. Syst. A 36, 953-969 (2016) · Zbl 1322.35072
[41] Lou, Y., Zhou, P.: Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions. J. Differ. Equ. 259, 141-171 (2015) · Zbl 1433.35171 · doi:10.1016/j.jde.2015.02.004
[42] Lutscher, F., Lewis, M.A., McCauley, E.: Effects of heterogeneity on spread and persistence in rivers. Bull. Math. Biol. 68, 2129-2160 (2006) · Zbl 1296.92211 · doi:10.1007/s11538-006-9100-1
[43] Lutscher, F., McCauley, E., Lewis, M.A.: Spatial patterns and coexistence mechanisms in systems with unidirectional flow. Theor. Popul. Biol. 71, 267-277 (2007) · Zbl 1124.92050 · doi:10.1016/j.tpb.2006.11.006
[44] Lutscher, F., Pachepsky, E., Lewis, M.A.: The effect of dispersal patterns on stream populations. SIAM Rev. 47, 749-772 (2005) · Zbl 1076.92052 · doi:10.1137/050636152
[45] Pachepsky, E., Lutscher, F., Nisbet, R.M., Lewis, M.A.: Persistence, spread and the drift paradox. Theor. Popul. Biol. 67, 61-73 (2005) · Zbl 1071.92043 · doi:10.1016/j.tpb.2004.09.001
[46] Potapov, A.B., Lewis, M.A.: Climate and competition: the effect of moving range boundaries on habitat invasibility. Bull. Math. Biol. 66, 975-1008 (2004) · Zbl 1334.92454 · doi:10.1016/j.bulm.2003.10.010
[47] Smith, H.: Monotone Dynamical System: An Introduction to the Theory of Competitive and Cooperative Systems. American Mathematical Society, Providence (1995) · Zbl 0821.34003
[48] Speirs, D.C., Gurney, W.S.C.: Population persistence in rivers and estuaries. Ecology 82, 1219-1237 (2001) · doi:10.1890/0012-9658(2001)082[1219:PPIRAE]2.0.CO;2
[49] Vasilyeva, O., Lutscher, F.: Population dynamics in rivers: analysis of steady states. Can. Appl. Math. Q. 18, 439-469 (2011) · Zbl 1229.92081
[50] Walter, W.: A theorem on elliptic differential inequalities with an application to gradient bounds. Math. Z. 200, 293-299 (1989) · Zbl 0646.35034 · doi:10.1007/BF01230289
[51] Zhao, X.-Q.: Dynamical Systems in Population Biology. Springer, New York (2003) · Zbl 1023.37047 · doi:10.1007/978-0-387-21761-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.