×

Perpetual points: new tool for localization of coexisting attractors in dynamical systems. (English) Zbl 1366.34081

Summary: Perpetual points (PPs) are special critical points for which the magnitude of acceleration describing the dynamics drops to zero, while the motion is still possible (stationary points are excluded), e.g. considering the motion of the particle in the potential field, at perpetual point, it has zero acceleration and nonzero velocity. We show that using PPs we can trace all the stable fixed points in the system, and that the structure of trajectories leading from former points to stable equilibria may be similar to orbits obtained from unstable stationary points. Moreover, we argue that the concept of perpetual points may be useful in tracing unexpected attractors (hidden or rare attractors with small basins of attraction). We show potential applicability of this approach by analyzing several representative systems of physical significance, including the damped oscillator, pendula, and the Henon map. We suggest that perpetual points may be a useful tool for localizing coexisting attractors in dynamical systems.

MSC:

34D45 Attractors of solutions to ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alexander, J. C., Yorke, J. A., You, Z. & Kan, I. [1992] “ Riddled basins,” Int. J. Bifurcation and Chaos2, 795-813. · Zbl 0870.58046
[2] Baker, G. L. & Blackburn, J. A. [2005] The Pendulum. A Case Study in Physics (Oxford University Press). · Zbl 1088.70001
[3] Barger, V. & Olsson, M. G. [1973] Classical Mechanics: A Modern Perspective (McGraw-Hill). · Zbl 0273.70001
[4] Biham, O. & Wenzel, W. [1990] “ Unstable periodic orbits and the symbolic dynamics of the complex Henon map,” Phys. Rev. A42, 4639-4646.
[5] Blekhman, I. [2003] Selected Topics in Vibrational Mechanics (World Scientific, Singapore). · Zbl 1046.74002
[6] Chaudhuri, U. & Prasad, A. [2014] “ Complicated basins and the phenomenon of amplitude death in coupled hidden attractors,” Phys. Lett. A378, 713-718. · Zbl 1331.34121
[7] D’Alessandro, G., Grassberger, P., Isola, S. & Politi, A. [1990] “ On the topology of the Henon map,” J. Phys. A: Math. Gen.23, 5285-5294. · Zbl 0716.58010
[8] Dudkowski, D., Prasad, A. & Kapitaniak, T. [2015] “ Perpetual points and hidden attractors in dynamical systems,” Phys. Lett. A379, 2591-2596. · Zbl 1361.34067
[9] Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N. V., Leonov, G. A. & Prasad, A. [2016a] “ Hidden attractors in dynamical systems,” Phys. Rep.637, 1-50. · Zbl 1359.34054
[10] Dudkowski, D., Prasad, A. & Kapitaniak, T. [2016b] “ Perpetual points and periodic perpetual loci in maps,” Chaos26, 103103. · Zbl 1378.37089
[11] Hoover, W. G. [1985] “ Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A31, 1695-1697.
[12] Jafari, S., Nazarimehr, F., Sprott, J. C. & Golpayegani, S. M. R. H. [2015] “ Limitation of perpetual points for confirming conservation in dynamical systems,” Int. J. Bifurcation and Chaos25, 1550182-1-6. · Zbl 1330.34081
[13] Jiang, H., Liu, Y., Wei, Z. & Zhang, L. [2016] “ Hidden chaotic attractors in a class of two-dimensional maps,” Nonlin. Dyn.85, 2719-2727.
[14] Kibble, T. W. B. & Berkshire, F. H. [2004] Classical Mechanics (Imperial College Press). · Zbl 1068.70001
[15] Kovacic, I. & Brennan, M. J. [2011] The Duffing Equation: Nonlinear Oscillators and Their Behaviour (Wiley). · Zbl 1220.34002
[16] Lai, Y.-C. & Grebogi, C. [1996] “ Characterizing riddled fractal sets,” Phys. Rev. E53, 1371-1374.
[17] Leonov, G. A., Kuznetsov, N. V. & Vagaitsev, V. I. [2011] “ Localization of hidden Chua’s attractors,” Phys. Lett. A375, 2230-2233. · Zbl 1242.34102
[18] Leonov, G. A. & Kuznetsov, N. V. [2013] “ Hidden attractors in dynamical systems: From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits,” Int. J. Bifurcation and Chaos23, 1330002-1-69. · Zbl 1270.34003
[19] Lopes, A. O. [1992] “ On the dynamics of real polynomials on the plane,” Comput. Graph.16, 15-23.
[20] Nazarimehr, F., Saedi, B., Jafari, S. & Sprott, J. C. [2017] “ Are perpetual points sufficient for locating hidden attractors?” Int. J. Bifurcation and Chaos27, 1750037-1-7. · Zbl 1360.34122
[21] Nosé, S. [1984] “ A molecular dynamics method for simulations in the canonical ensemble,” Mol. Phys.52, 255-268.
[22] Ott, E. [1993] Chaos in Dynamical Systems (Cambridge University Press). · Zbl 0792.58014
[23] Ott, E., Alexander, J. C., Kan, I., Sommerer, J. C. & Yorke, J. A. [1994] “ The transition to chaotic attractors with riddled basins,” Physica D76, 384-410. · Zbl 0820.58043
[24] Parlitz, U. & Lauterborn, W. [1985] “ Superstructure in the bifurcation set of the Duffing equation \(<mml:math display=''inline`` overflow=''scroll``>\),” Phys. Lett. A107, 351-355.
[25] Pisarchik, A. N. & Feudel, U. [2014] “ Control of multistability,” Phys. Rep.540, 167-218. · Zbl 1357.34105
[26] Prasad, A. [2015] “ Existence of perpetual points in nonlinear dynamical systems and its applications,” Int. J. Bifurcation and Chaos25, 1530005-1-10. · Zbl 1309.34110
[27] Prasad, A. [2016] “ A note on topological conjugacy for perpetual points,” Int. J. Nonlin. Sci.21, 60-64. · Zbl 1394.37034
[28] Sabarathinam, S., Thamilmaran, K., Borkowski, L., Perlikowski, P., Brzeski, P., Stefanski, A. & Kapitaniak, T. [2013] “ Transient chaos in two coupled dissipatively perturbed Hamiltonian Duffing oscillators,” Commun. Nonlin. Sci. Numer. Simul.18, 3098-3107. · Zbl 1329.37037
[29] Schultz, P., Menck, P. J., Heitzig, J. & Kurths, J. [2017] “ Potentials and limits to basin stability estimation,” New J. Phys.19, 023005. · Zbl 1512.65296
[30] Ueta, T., Ito, D. & Aihara, K. [2015] “ Can a pseudo periodic orbit avoid a catastrophic transition?” Int. J. Bifurcation and Chaos25, 1550185-1-10. · Zbl 1330.34106
[31] Wei, Z. [2011] “ Dynamical behaviors of a chaotic system with no equilibria,” Phys. Lett. A376, 102-108. · Zbl 1255.37013
[32] Wei, Z., Wang, R. & Liu, A. [2014] “ A new finding of the existence of hidden hyperchaotic attractors with no equilibria,” Math. Comput. Simul.100, 13-23. · Zbl 07312592
[33] Wei, Z. & Zhang, W. [2014] “ Hidden hyperchaotic attractors in a modified Lorenz-Stenflo system with only one stable equilibrium,” Int. J. Bifurcation and Chaos24, 1450127-1-14. · Zbl 1302.34017
[34] Wei, Z., Yu, P., Zhang, W. & Yao, M. [2015a] “ Study of hidden attractors, multiple limit cycles from Hopf bifurcation and boundedness of motion in the generalized hyperchaotic Rabinovich system,” Nonlin. Dyn.82, 131-141. · Zbl 1348.34102
[35] Wei, Z., Zhang, W., Wang, Z. & Yao, M. [2015b] “ Hidden attractors and dynamical behaviors in an extended Rikitake system,” Int. J. Bifurcation and Chaos25, 1550028-1-11. · Zbl 1309.34009
[36] Wei, Z., Moroz, I., Wang, Z., Sprott, J. C. & Kapitaniak, T. [2016a] “ Dynamics at infinity, degenerate Hopf and zero-Hopf bifurcation for Kingni-Jafari system with hidden attractors,” Int. J. Bifurcation and Chaos26, 1650125-1-16. · Zbl 1343.34040
[37] Wei, Z., Pham, V.-T., Kapitaniak, T. & Wang, Z. [2016b] “ Bifurcation analysis and circuit realization for multiple-delayed Wang-Chen system with hidden chaotic attractors,” Nonlin. Dyn.85, 1635-1650. · Zbl 1349.37049
[38] Zhou, J. X., Aliyu, M. D. S., Aurell, E. & Huang, S. [2012] “ Quasi-potential landscape in complex multi-stable systems,” J. Roy. Soc. Interf.9, 3539-3553.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.