×

Numerical homogenization of elastic and thermal material properties for metal matrix composites (MMC). (English) Zbl 1365.74147

Summary: A two-scale material modeling approach is adopted in order to determine macroscopic thermal and elastic constitutive laws and the respective parameters for metal matrix composite (MMC). Since the common homogenization framework violates the thermodynamical consistency for non-constant temperature fields, i.e., the dissipation is not conserved through the scale transition, the respective error is calculated numerically in order to prove the applicability of the homogenization method. The thermomechanical homogenization is applied to compute the macroscopic mass density, thermal expansion, elasticity, heat capacity and thermal conductivity for two specific MMCs, i.e., aluminum alloy Al2024 reinforced with 17 or 30 % silicon carbide particles. The temperature dependency of the material properties has been considered in the range from 0 to 500\(°\)C, the melting temperature of the alloy. The numerically determined material properties are validated with experimental data from the literature as far as possible.

MSC:

74Q15 Effective constitutive equations in solid mechanics
74B10 Linear elasticity with initial stresses
74E30 Composite and mixture properties
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Asad, M., Girardin, F., Mabrouki, T., Rigal, J.F.: Dry cutting study of an aluminium alloy (A2024-T351): a numerical and experimental approach. Int. J. Mater. Form. 1, 499-502 (2008) · doi:10.1007/s12289-008-0150-9
[2] Böhm, H.J., Rasool, A.: Effects of particle shape on the thermoelastoplastic behavior of particle reinforced composites. Int. J. Solids Struct. 87, 90-101 (2016). doi:10.1016/j.ijsolstr.2016.02.028 · doi:10.1016/j.ijsolstr.2016.02.028
[3] Böhm, H.J.: A short introduction to basic aspects of continuum micromechanics. Technical Report, CDLFMD Report, 020624, 31998 (1998) · JFM 21.1039.01
[4] Böhm, H.J., Rammerstorfer, F.G., Weissenbek, E.: Some simple models for micromechanical investigations of fiber arrangement effects in MMCs. Comput. Mater. Sci. 1(3), 177-194 (1993). doi:10.1016/0927-0256(93)90010-K · doi:10.1016/0927-0256(93)90010-K
[5] Brammer, J.A., Percival, C.M.: Elevated-temperature elastic moduli of 2024 aluminum obtained by a laser-pulse technique. Exp. Mech. 10(6), 245-250 (1970) · doi:10.1007/BF02324097
[6] Budiansky, B.: Thermal and thermoelastic properties of isotropic composites. J. Compos. Mater. 4(3), 286-295 (1970). doi:10.1177/002199837000400301 · doi:10.1177/002199837000400301
[7] Dirrenberger, J., Forest, S., Jeulin, D.: Elastoplasticity of auxetic materials. Comput. Mater. Sci. 64, 57-61 (2012). doi:10.1016/j.commatsci.2012.03.036 · doi:10.1016/j.commatsci.2012.03.036
[8] Fillep, S., Mergheim, J., Steinmann, P.: Computational modelling and homogenization of technical textiles. Eng. Struct. 50, 68-73 (2013) · Zbl 1311.74100 · doi:10.1016/j.engstruct.2013.01.025
[9] Fritzen, F., Forest, S., Kondo, D., Böhlke, T.: Computational homogenization of porous materials of green type. Comput. Mech. 52(1), 121-134 (2013). doi:10.1007/s00466-012-0801-z · Zbl 1309.74061 · doi:10.1007/s00466-012-0801-z
[10] Han, W., Eckschlager, A., Böhm, H.J.: The effects of three-dimensional multi-particle arrangements on the mechanical behavior and damage initiation of particle-reinforced mmcs. Compos. Sci. Technol. 61(11), 1581-1590 (2001). doi:10.1016/S0266-3538(01)00061-6 · doi:10.1016/S0266-3538(01)00061-6
[11] Hasselman, D., Johnson, L.: Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 21(6), 508-515 (1987). doi:10.1177/002199838702100602. Cited By 657 · doi:10.1177/002199838702100602
[12] Haupt, P.: Continuum Mechanics and Theory of Materials, Advanced Texts in Physics. Springer, Berlin (2002) · doi:10.1007/978-3-662-04775-0
[13] Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11(5), 357-372 (1963) · Zbl 0114.15804 · doi:10.1016/0022-5096(63)90036-X
[14] Holzapfel, G.A.: Nonlinear Solid Mechanics—A Continuum Approach for Engineering. Wiley, Chichester (2000) · Zbl 0980.74001
[15] Javili, A., McBride, A., Mergheim, J., Steinmann, P., Schmidt, U.: Micro-to-macro transitions for continua with surface structure at the microscale. Int. J. Solids Struct. 50(2), 2561-2572 (2013) · doi:10.1016/j.ijsolstr.2013.03.022
[16] Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40(13-14), 3647-3679 (2003) · Zbl 1038.74605 · doi:10.1016/S0020-7683(03)00143-4
[17] Mandel, J.: Contribution téorique à l’étude de l’écrouissage et des lois de l’écoulement plastique. In: Görtler, H. (ed.) Applied Mechanics: Proceedings of the Eleventh International Congress of Applied Mechanics Munich (Germany), pp. 502-509 (1966)
[18] Mangipudi, K., Onck, P.: Multiscale modelling of damage and failure in two-dimensional metallic foams. J. Mech. Phys. Solids 59(7), 1437-1461 (2011). doi:10.1016/j.jmps.2011.02.008 · Zbl 1270.74190 · doi:10.1016/j.jmps.2011.02.008
[19] Moakher, M., Norris, A.N.: The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry. J. Elast. 85(3), 215-263 (2006). doi:10.1007/s10659-006-9082-0 · Zbl 1104.74014 · doi:10.1007/s10659-006-9082-0
[20] Munro, R.G.: Materials properties of a sintered \[\alpha\] α-SiC. J. Phys. Chem. Ref. Data 26(5), 1195-1203 (1997) · doi:10.1063/1.556000
[21] Nguyen, V.D., Béchet, E., Geuzaine, C., Noels, L.: Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation. Comput. Mater. Sci. 55, 390-406 (2012) · doi:10.1016/j.commatsci.2011.10.017
[22] Ottosen, N., Ristinmaa, M.: The Mechanics of Constitutive Modeling. Elsevier Science, Amsterdam (2005) · Zbl 0924.73075
[23] Pfaller, S., Rahimi, M., Possart, G., Steinmann, P., Müller-Plathe, F., Böhm, M.C.: An arlequin-based method to couple molecular dynamics and finite element simulations of amorphous polymers and nanocomposites. Comput. Methods Appl. Mech. Eng. 260, 109-129 (2013) · Zbl 1286.74007 · doi:10.1016/j.cma.2013.03.006
[24] Reuss, A.: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. J. Appl. Math. Mech. 9(1), 49-58 (1929). doi:10.1002/zamm.19290090104 · JFM 55.1110.02 · doi:10.1002/zamm.19290090104
[25] Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D., Bieler, T., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58(4), 1152-1211 (2010). doi:10.1016/j.actamat.2009.10.058 · doi:10.1016/j.actamat.2009.10.058
[26] Shilkrot, L., Miller, R., Curtin, W.: Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics. J. Mech. Phys. Solids 52(4), 755-787 (2004). doi:10.1016/j.jmps.2003.09.023 · Zbl 1049.74015 · doi:10.1016/j.jmps.2003.09.023
[27] Song, M.: Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites. Trans. Nonferrous Metals Soc. China (English Edition) 19(6), 1400-1404 (2009). doi:10.1016/S1003-6326(09)60040-6 · doi:10.1016/S1003-6326(09)60040-6
[28] Tadmor, E.B., Miller, R.E.: Modeling Materials: Continuum, Atomistic and Multiscale Techniques. Cambridge University Press, Cambridge (2011) · Zbl 1235.80001 · doi:10.1017/CBO9781139003582
[29] Temizer, I., Wriggers, P.: Homogenization in finite thermoelasticity. J. Mech. Phys. Solids 59(2), 344-372 (2011). doi:10.1016/j.jmps.2010.10.004 · Zbl 1270.74059 · doi:10.1016/j.jmps.2010.10.004
[30] Voigt, W.: Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann. Phys. 274(12), 573-587 (1889). doi:10.1002/andp.18892741206 · JFM 21.1039.01 · doi:10.1002/andp.18892741206
[31] Zhao, N., Yang, Yq, Han, M., Luo, X., Feng, Gh, Zhang, Rj: Finite element analysis of pressure on 2024 aluminum alloy created during restricting expansion-deformation heat-treatment. Trans. Nonferrous Met. Soc. China 22, 2226-2232 (2012) · doi:10.1016/S1003-6326(11)61453-2
[32] Ziegler, T., Neubrand, A., Piat, R.: Multiscale homogenization models for the elastic behaviour of metal/ceramic composites with lamellar domains. Compos. Sci. Technol. 70(4), 664-670 (2010). doi:10.1016/j.compscitech.2009.12.022 · doi:10.1016/j.compscitech.2009.12.022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.