×

zbMATH — the first resource for mathematics

The SDEval benchmarking toolkit. (English) Zbl 1365.68493

MSC:
68W30 Symbolic computation and algebraic computation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] [BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The smt-lib standard: Version 2.0. InProceedings of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh, England), volume 13, 2010.
[2] [DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. InTools and Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer, 2008. · Zbl 05262379 · doi:10.1007/978-3-540-78800-3_24
[3] [BCD+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4. InComputer Aided Verification, pages 171–177. Springer, 2011. · Zbl 05940712 · doi:10.1007/978-3-642-22110-1_14
[4] [Neu12] Severin Neumann. Parallel reduction of matrices in Gröbner bases computations. In Vladimir P. Gerdt, Wolfram Koepf, Ernst W. Mayr, and Evgenii V. Vorozhtsov, editors,Computer Algebra in Scientific Computing, volume 7442 ofLecture Notes in Computer Science, pages 260–270. Springer Berlin Heidelberg, 2012. URL http://dx.doi.org/10.1007/978-3-642-32973-9_22. · Zbl 1373.13031 · doi:10.1007/978-3-642-32973-9_22
[5] [KFI+87] S. Katsura, W. Fukuda, S. Inawashiro, N. M. Fujiki, and R. Gebauer. Distribution of effective field in the Ising spin glass of the ±jmodel atT=0.Cell Biophysics, 11(1): 309–319, 1987. · doi:10.1007/BF02797126
[6] [BH08] Goran Bjorck and Uffe Haagerup. All cyclic p-roots of index 3, found by symmetry-preserving calculations.arXiv preprint arXiv:0803.2506, 2008.
[7] [LRP07] V. Levandovskyy, C. Rosenkranz, and T. Povalyayeva. Online databasegröbner bases implementations. functionality check and comparison, 2007. URL http://www.risc.uni-linz.ac.at/Groebner-Bases-Implementations/.
[8] [Grä09] Hans-Gert Gräbe. The SymbolicData project. Technical report, Technical report (2000–2009), 2009. URL http://www.symbolicdata.org.
[9] [GNJ13] Hans-Gert Gräbe, Andreas Nareike, and Simon Johanning. The SymbolicData project–towards a computer algebra social network. 2013.
[10] [HLN13] Albert Heinle, Viktor Levandovskyy, and Andreas Nareike. SymbolicData: SDEval - benchmarking for everyone.arXiv preprint arXiv:1310.5551, 2013.
[11] [CCH+11] Svetlana Cojocaru, Alexandru Colesnicov, Albert Heinle, Viktor Levandovskyy, Ludmila Malahov, Grischa Studzinski, and Victor Ufnarovski. Creation of a knowledge framework for non-commutative computer algebra. InProc. 7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, pages 166–169, 2011.
[12] [HL13] Albert Heinle and Viktor Levandovskyy. Factorization of Z-homogeneous polynomials in the first (q)-Weyl algebra.arXiv preprint arXiv:1302.5674, 2013. · Zbl 1400.16001
[13] [GHL14] Mark Giesbrecht, Albert Heinle, and Viktor Levandovskyy. Factoring linear differential operators innvariables. InProceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pages 194–201. ACM, 2014. · Zbl 1325.68280
[14] [AGK96] Beatrice Amrhein, Oliver Gloor, and Wolfgang Küchlin. Walking faster. InDesign and Implementation of Symbolic Computation Systems, pages 150–161. Springer, 1996.
[15] [SST12] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. Introducing StarExec: a cross-community infrastructure for logic solving.Comparative Empirical Evaluation of Reasoning Systems, page 2, 2012. · Zbl 06348250
[16] [BR08] Mohamed Barakat and Daniel Robertz. homalg — a meta-package for homological algebra.Journal of Algebra and its Applications, 7(03): 299–317, 2008. · Zbl 1151.13306 · doi:10.1142/S0219498808002813
[17] [GAP13] GAP.GAP – Groups, Algorithms, and Programming, Version 4.6.3. The GAP Group, 2013. URL http://www.gap-system.org.
[18] [S+08] William Stein et al. Sage: Open source mathematical software, 2008. URL http://www.sagemath.org.
[19] [SEW12] Satya Swarup Samal, Hassan Errami, and Andreas Weber. PoCaB: a software infrastructure to explore algebraic methods for bio-chemical reaction networks. InComputer Algebra in Scientific Computing, pages 294–307. Springer, 2012. · Zbl 1373.92002 · doi:10.1007/978-3-642-32973-9_25
[20] [KG00] Minoru Kanehisa and Susumu Goto. KEGG: Kyoto encyclopedia of genes and genomes.Nucleic acids research, 28(1): 27–30, 2000. · Zbl 05435931 · doi:10.1093/nar/28.1.27
[21] [LNBB+06] Nicolas Le Novere, Benjamin Bornstein, Alexander Broicher, Melanie Courtot, Marco Donizelli, Harish Dharuri, Lu Li, Herbert Sauro, Maria Schilstra, Bruce Shapiro, et al. BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems.Nucleic acids research, 34(suppl 1): D689–D691, 2006. · Zbl 05437947 · doi:10.1093/nar/gkj092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.