# zbMATH — the first resource for mathematics

Full bandwidth matrix selectors for gradient kernel density estimate. (English) Zbl 1365.62127
Summary: The most important factor in multivariate kernel density estimation is a choice of a bandwidth matrix. This choice is particularly important, because of its role in controlling both the amount and the direction of multivariate smoothing. Considerable attention has been paid to constrained parameterization of the bandwidth matrix such as a diagonal matrix or a pre-transformation of the data. A general multivariate kernel density derivative estimator has been investigated. Data-driven selectors of full bandwidth matrices for a density and its gradient are considered. The proposed method is based on an optimally balanced relation between the integrated variance and the integrated squared bias. The analysis of statistical properties shows the rationale of the proposed method. In order to compare this method with cross-validation and plug-in methods the relative rate of convergence is determined. The utility of the method is illustrated through a simulation study and real data applications.

##### MSC:
 62G07 Density estimation 62H12 Estimation in multivariate analysis
##### Software:
SiZer ; pyuvdata; KernSmooth
Full Text:
##### References:
 [1] Aldershof, B.; Marron, J.; Park, B.; Wand, M., Facts about the Gaussian probability density function, Applicable Analysis, 59, 289-306, (1995) · Zbl 0844.60007 [2] Cao, R.; Cuevas, A.; González Manteiga, W., A comparative study of several smoothing methods in density estimation, Computational Statistics and Data Analysis, 17, 153-176, (1994) · Zbl 0937.62518 [3] Chacón, J.E., Duong, T., 2012. Bandwidth selection for multivariate density derivative estimation, with applications to clustering and bump hunting. e-prints. http://arxiv.org/abs/1204.6160. [4] Chacón, J.E., 2010. Multivariate kernel estimation, lecture. Masaryk University, Brno. [5] Chacón, J. E.; Duong, T., Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices, Test, 19, 375-398, (2010) · Zbl 1203.62054 [6] Chacón, J. E.; Duong, T.; Wand, M. P., Asymptotics for general multivariate kernel density derivative estimators, Statistica Sinica, 21, 807-840, (2011) · Zbl 1214.62039 [7] Chaudhuri, P.; Marron, J. S., Sizer for exploration of structures in curves, Journal of the American Statistical Association, 94, 807-823, (1999) · Zbl 1072.62556 [8] Duong, T., 2004. Bandwidth selectors for multivariate kernel density estimation. Ph.D. Thesis. School of Mathematics and Statistics. University of Western Australia. · Zbl 1060.62042 [9] Duong, T.; Cowling, A.; Koch, I.; Wand, M. P., Feature significance for multivariate kernel density estimation, Computational Statistics and Data Analysis, 52, 4225-4242, (2008) · Zbl 1452.62265 [10] Duong, T.; Hazelton, M., Cross-validation bandwidth matrices for multivariate kernel density estimation, Scandinavian Journal of Statistics, 32, 485-506, (2005) · Zbl 1089.62035 [11] Duong, T.; Hazelton, M., Convergence rates for unconstrained bandwidth matrix selectors in multivariate kernel density estimation, Journal of Multivariate Analysis, 93, 417-433, (2005) · Zbl 1066.62059 [12] Godtliebsen, F.; Marron, J. S.; Chaudhuri, P., Significance in scale space for bivariate density estimation, Journal of Computational and Graphical Statistics, 11, 1-21, (2002) [13] Horová, I.; Koláček, J.; Vopatová, K., Visualization and bandwidth matrix choice, Communications in Statistics—Theory and Methods, 759-777, (2012) · Zbl 1238.62042 [14] Horová, I.; Koláček, J.; Zelinka, J.; Vopatová, K., Bandwidth choice for kernel density estimates, (Proceedings IASC, (2008), IASC Yokohama), 542-551 [15] Horová, I.; Vieu, P.; Zelinka, J., Optimal choice of nonparametric estimates of a density and of its derivatives, Statistics and Decisions, 20, 355-378, (2002) · Zbl 1019.62034 [16] Horová, I.; Vopatová, K., Kernel gradient estimate, (Ferraty, F., Recent Advances in Functional Data Analysis and Related Topics, (2011), Springer-Verlag Berlin, Heidelberg), 177-182 [17] Horová, I.; Zelinka, J., Contribution to the bandwidth choice for kernel density estimates, Computational Statistics, 22, 31-47, (2007) · Zbl 1194.62031 [18] Horová, I.; Zelinka, J., Kernel estimation of hazard functions for biomedical data sets, (Härdle, W.; Mori, Y.; Vieu, P., Statistical Methods for Biostatistics and Related Fields, Mathematics and Statistics, (2007), Springer-Verlag Berlin, Heidelberg), 64-86 [19] Horová, I.; Zelinka, J.; Budíková, M., Kernel estimates of hazard functions for carcinoma data sets, Environmetrics, 17, 239-255, (2006) [20] Härdle, W.; Marron, J. S.; Wand, M. P., Bandwidth choice for density derivatives, Journal of the Royal Statistical Society, Series B (Methodological), 52, 223-232, (1990) · Zbl 0699.62036 [21] Jones, M. C.; Kappenman, R. F., On a class of kernel density estimate bandwidth selectors, Scandinavian Journal of Statistics, 19, 337-349, (1991) · Zbl 0767.62035 [22] Jones, M. C.; Marron, J. S.; Park, B. U., A simple root $$n$$ bandwidth selector, Annals of Statistics, 19, 1919-1932, (1991) · Zbl 0745.62033 [23] Magnus, J. R.; Neudecker, H., Commutation matrix—some properties and application, Annals of Statistics, 7, 381-394, (1979) · Zbl 0414.62040 [24] Magnus, J. R.; Neudecker, H., Matrix differential calculus with applications in statistics and econometrics, (1999), Wiley · Zbl 0912.15003 [25] Marron, J. S.; Ruppert, D., Transformations to reduce boundary bias in kernel density estimation, Journal of the Royal Statistical Society, Series B (Methodological), 56, 653-671, (1994) · Zbl 0805.62046 [26] Park, B.; Marron, J., Comparison of data-driven bandwidth selectors, Journal of the American Statistical Association, 85, 66-72, (1990) [27] Sain, S.; Baggerly, K.; Scott, D., Cross-validation of multivariate densities, Journal of the American Statistical Association, 89, 807-817, (1994) · Zbl 0805.62059 [28] Scott, D. W., Multivariate density estimation: theory, practice, and visualization, (Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, (1992), Wiley) · Zbl 0850.62006 [29] Scott, D. W.; Terrell, G. R., Biased and unbiased cross-validation in density estimation, Journal of the American Statistical Association, 82, 1131-1146, (1987) · Zbl 0648.62037 [30] Silverman, B. W., Density estimation for statistics and data analysis, (1986), Chapman and Hall London · Zbl 0617.62042 [31] Simonoff, J. S., Smoothing methods in statistics, (1996), Springer-Verlag New York · Zbl 0859.62035 [32] Taylor, C. C., Bootstrap choice of the smoothing parameter in kernel density estimation, Biometrika, 76, 705-712, (1989) · Zbl 0678.62042 [33] Terrell, G. R., The maximal smoothing principle in density estimation, Journal of the American Statistical Association, 85, 470-477, (1990) [34] UNICEF, 2003. The state of the world’s children 2003. http://www.unicef.org/sowc03/index.html. [35] Vopatová, K., Horová, I., Koláček, J., 2010. Bandwidth choice for kernel density derivative. In: Proceedings of the 25th International Workshop on Statistical Modelling. Glasgow, Scotland, pp. 561-564. [36] Wand, M.; Jones, M., Kernel smoothing, (1995), Chapman and Hall London · Zbl 0854.62043 [37] Wand, M. P.; Jones, M. C., Multivariate plug-in bandwidth selection, Computational Statistics, 9, 97-116, (1994) · Zbl 0937.62055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.