×

zbMATH — the first resource for mathematics

An efficient method to solve a fractional differential equation by using linear programming and its application to an optimal control problem. (English) Zbl 1365.26008
Summary: This paper presents a new idea to solve fractional differential equations and fractional optimal control problems. The fractional derivative is defined in the Grunwald-Letnikov sense. The method is based on the linear programming problem. In this paper, by using first the concept of fractional derivatives, we will suggest a method where an equation with a fractional derivative is changed to a linear programming problem, and by solving it the fractional derivative will be obtained. Actually this suggested method is based on the minimization of total error. Some numerical examples are provided to confirm the accuracy of the proposed method.

MSC:
26A33 Fractional derivatives and integrals
65Q20 Numerical methods for functional equations
90C05 Linear programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1177/1077546307087451 · Zbl 1229.49045 · doi:10.1177/1077546307087451
[2] DOI: 10.1177/1077546307077467 · Zbl 1182.70047 · doi:10.1177/1077546307077467
[3] Agrawal OP, Journal of Vibration and Control 16 (13) pp 1967– (2010) · Zbl 1269.49002 · doi:10.1177/1077546309353361
[4] Alipour M, Journal of Vibration and Control 19 (16) pp 2523– (2013) · Zbl 1358.93097 · doi:10.1177/1077546312458308
[5] Baleanu D, Abstract and Applied Analysis (2013)
[6] Baleanu D, Journal of Vibration and Control 15 pp 583– (2009) · Zbl 1272.49068 · doi:10.1177/1077546308088565
[7] Batiha B, International Mathematical Forum 2 (56) pp 2759– (2007) · Zbl 1137.65372 · doi:10.12988/imf.2007.07248
[8] Bhrawy AH, Asian Journal of Control (2015)
[9] Biswas RK, Journal of Vibration and Control 17 (7) pp 1034– (2011) · Zbl 1271.74330 · doi:10.1177/1077546310373618
[10] Byszewski L, International Journal of Stochastic Analysis 3 (3) pp 163– (1990) · Zbl 0725.35059 · doi:10.1155/S1048953390000156
[11] Dehghan M, Journal of Vibration and Control (2014)
[12] DOI: 10.1186/s13662-014-0344-z · Zbl 1423.49018 · doi:10.1186/s13662-014-0344-z
[13] Fourier JBJ (1822) Theorie Analytique de la Chaleur, Paris: Didot, pp. 499–508.
[14] Guo TL, Journal of Optimization Theory and Applications 156 pp 115– (2013) · Zbl 1263.49018 · doi:10.1007/s10957-012-0233-0
[15] Hasan MM, Journal of Vibration and Control (2011)
[16] Jafari H, University Polytechnic of Bucharest Scientific Bulletin Series A: Applied Mathematics and Physics 76 (3) pp 115– (2014)
[17] Kamocki R, Applied Mathematics and Computation 235 pp 94– (2014) · Zbl 1334.49010 · doi:10.1016/j.amc.2014.02.086
[18] Keshavarz E, Journal of Vibration and Control (2015)
[19] Lacroix SF, Courcier (Paris) 3 (2) pp 409– (1819)
[20] Leibniz GW, Journal of Leibnizen Mathematische Schriften 2 pp 301– (1849)
[21] DOI: 10.1016/j.camwa.2011.03.044 · Zbl 1228.65109 · doi:10.1016/j.camwa.2011.03.044
[22] Liouville J, Journal de l’École Polytechnique – Mathématiques 13 pp 529– (1832)
[23] Luchko Y, Journal of Mathematical Analysis and Applications 374 pp 538– (2011) · Zbl 1202.35339 · doi:10.1016/j.jmaa.2010.08.048
[24] Odibat Z, Chaos, Solitons & Fractals 36 (1) pp 167– (2008) · Zbl 1152.34311 · doi:10.1016/j.chaos.2006.06.041
[25] Podlubny I, Fractional Differential Equations (1999)
[26] Pooseh S, Journal of Industrial and Management Optimization 10 pp 363– (2014) · Zbl 1278.26013 · doi:10.3934/jimo.2014.10.363
[27] Raja MAZ, Annals of Mathematics and Artificial Intelligence 60 (3) pp 229– (2010) · Zbl 1228.65116 · doi:10.1007/s10472-010-9222-x
[28] Samko SG, Fractional Integrals and Derivatives: Theory and Applications (1993)
[29] DOI: 10.1016/j.apm.2014.06.003 · doi:10.1016/j.apm.2014.06.003
[30] DOI: 10.1016/j.camwa.2009.08.006 · Zbl 1189.49045 · doi:10.1016/j.camwa.2009.08.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.