×

zbMATH — the first resource for mathematics

A numerical scheme for the solution of a class of fractional variational and optimal control problems using the modified Jacobi polynomials. (English) Zbl 1365.26005
Summary: The aim of this paper is to investigate, from the numerical point of view, the Jacobi polynomials to solve fractional variational problems (FVPs) and fractional optimal control problems (FOCPs). A direct numerical method for solving a general class of FVPs and FOCPs is presented. The fractional derivative in FVPs is in the Caputo sense and in FOCPs is in the Riemann-Liouville sense. The Rayleigh-Ritz method is introduced for the numerical solution of FVPs containing left or right Caputo fractional derivatives. Rayleigh-Ritz method is one of the well-known direct methods used for the solution of variational problems. In this technique, at first, we expand the unknown function in terms of the modified Jacobi polynomials and then we derive a compact form of fractional derivative of the unknown function in terms of the Jacobi polynomials. Examples indicate that the new technique has high accuracy and is very efficient to implement.

MSC:
26A33 Fractional derivatives and integrals
49K21 Optimality conditions for problems involving relations other than differential equations
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Software:
OPQ
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1080/00207178908953385 · Zbl 0679.49031 · doi:10.1080/00207178908953385
[2] DOI: 10.1016/S0022-247X(02)00180-4 · Zbl 1070.49013 · doi:10.1016/S0022-247X(02)00180-4
[3] DOI: 10.1007/s11071-004-3764-6 · Zbl 1121.70019 · doi:10.1007/s11071-004-3764-6
[4] Agrawal OP, Journal of Physics A 39 pp 10375– (2006) · Zbl 1097.49021 · doi:10.1088/0305-4470/39/33/008
[5] Agrawal OP, Journal of Physics A 40 pp 6287– (2007) · Zbl 1125.26007 · doi:10.1088/1751-8113/40/24/003
[6] Agrawal OP, Journal of Vibration and Control 13 pp 1217– (2007) · Zbl 1158.49006 · doi:10.1177/1077546307077472
[7] Agrawal OP, Journal of Mathematical Analysis and Applications 337 pp 1– (2008) · Zbl 1123.65059 · doi:10.1016/j.jmaa.2007.03.105
[8] Almeida R, Journal of Vibration and Control 19 pp 2177– (2012) · Zbl 1358.93098 · doi:10.1177/1077546312458818
[9] DOI: 10.1016/j.aml.2009.07.002 · Zbl 1183.26005 · doi:10.1016/j.aml.2009.07.002
[10] Atanacković TM, Journal of Physics A 41 pp 095201– (2008) · Zbl 1175.49020 · doi:10.1088/1751-8113/41/9/095201
[11] Atanacković TM, Journal of Mathematical Analysis and Applications 328 pp 590– (2007) · Zbl 1115.34005 · doi:10.1016/j.jmaa.2006.05.038
[12] Baleanu D, Reports on Mathematical Physics 61 pp 199– (2008) · Zbl 1166.58304 · doi:10.1016/S0034-4877(08)80007-9
[13] Bastos N, Signal Processing 91 pp 513– (2011) · Zbl 1203.94022 · doi:10.1016/j.sigpro.2010.05.001
[14] Betts JT, Practical Methods for Optimal Control Using Nonlinear Programming (2001)
[15] Cresson J, Journal of Mathematical Physics 48 pp 033504– (2007) · Zbl 1137.37322 · doi:10.1063/1.2483292
[16] Datta KB, Orthogonal Functions in Systems and Control (1995) · doi:10.1142/2476
[17] Dehghan M, Numerical Methods for Partial Differential Equations 26 pp 448– (2010)
[18] DOI: 10.1007/978-3-642-14574-2 · Zbl 1215.34001 · doi:10.1007/978-3-642-14574-2
[19] Doha EH, Applied Mathematics and Computation 219 pp 8042– (2013) · Zbl 1291.65207 · doi:10.1016/j.amc.2013.01.051
[20] Dreisigmeyer DW, Journal of Physics A 36 pp 8297– (2003) · Zbl 1079.70014 · doi:10.1088/0305-4470/36/30/307
[21] Dreisigmeyer DW, Journal of Physics A 37 pp L117– (2004) · Zbl 1073.70014 · doi:10.1088/0305-4470/37/11/L01
[22] Esmaeili S, Communications in Nonlinear Science and Numerical Simulation 16 pp 3646– (2011) · Zbl 1226.65062 · doi:10.1016/j.cnsns.2010.12.008
[23] Eslahchi MR, Journal of Computational and Applied Mathematics 257 pp 105– (2014) · Zbl 1296.65106 · doi:10.1016/j.cam.2013.07.044
[24] Frederico GSF, Journal of Mathematical Analysis and Applications 334 pp 834– (2007) · Zbl 1119.49035 · doi:10.1016/j.jmaa.2007.01.013
[25] Gautschi W, Orthogonal Polynomials: Computation and Approximation (2004)
[26] DOI: 10.1142/3779 · doi:10.1142/3779
[27] Kilbas AA, Theory and Applications of Fractional Differential Equations (2006)
[28] Klimek K, Czechoslovak Journal of Physics 51 pp 1348– (2001) · Zbl 1064.70507 · doi:10.1023/A:1013378221617
[29] Klimek K, Journal of Physics A 35 pp 6675– (2002) · Zbl 1039.35005 · doi:10.1088/0305-4470/35/31/311
[30] Lakestani M, Communications in Nonlinear Science and Numerical Simulation 17 pp 1149– (2012) · Zbl 1276.65015 · doi:10.1016/j.cnsns.2011.07.018
[31] DOI: 10.1016/j.camwa.2011.03.044 · Zbl 1228.65109 · doi:10.1016/j.camwa.2011.03.044
[32] DOI: 10.1016/j.cam.2013.03.003 · Zbl 1286.49030 · doi:10.1016/j.cam.2013.03.003
[33] DOI: 10.1142/p614 · doi:10.1142/p614
[34] Malinowska AB, Fractional Dynamics and Control pp 97– (2012) · doi:10.1007/978-1-4614-0457-6_8
[35] Malinowska AB, Computers and Mathematics with Applications 59 pp 3110– (2010) · Zbl 1193.49023 · doi:10.1016/j.camwa.2010.02.032
[36] Malinowska AB, Fractional Calculus and Applied Analysis 14 pp 523– (2011) · Zbl 1273.49025 · doi:10.2478/s13540-011-0032-6
[37] Metzler R, Physics Reports 339 pp 1– (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[38] Muslih SI, Journal of Mathematical Analysis and Applications 304 pp 599– (2005) · Zbl 1149.70320 · doi:10.1016/j.jmaa.2004.09.043
[39] Podlubny I, Fractional Differential Equations (1999)
[40] Pooseh S, Central European Journal of Physics 11 pp 1262– (2013)
[41] Pooseh S, Computers and Mathematics with Applications 66 pp 668– (2013) · Zbl 1350.49033 · doi:10.1016/j.camwa.2013.01.045
[42] Riewe F, Physical Review E 53 pp 1890– (1996) · doi:10.1103/PhysRevE.53.1890
[43] Riewe F, Physical Review E 55 pp 3581– (1997) · doi:10.1103/PhysRevE.55.3581
[44] Rossikhin Y, Applied Mechanics Reviews 63 pp 010801– (2010) · doi:10.1115/1.4000563
[45] Saadatmandi A, Computers and Mathematics with Applications 59 pp 1326– (2010) · Zbl 1189.65151 · doi:10.1016/j.camwa.2009.07.006
[46] Stanislavsky AA, The European Physical Journal B - Condensed Matter and Complex Systems 49 pp 93– (2006) · doi:10.1140/epjb/e2006-00023-3
[47] Swarztrauber PN, SIAM Journal on Scientific Computing 24 pp 945– (2002) · Zbl 1036.65030 · doi:10.1137/S1064827500379690
[48] Tarasov V, Physica A: Statistical Mechanics and its Applications 354 pp 249– (2005) · doi:10.1016/j.physa.2005.02.047
[49] Tarasov V, Journal of Physics A: Mathematical and General 39 pp 9797– (2006) · Zbl 1101.70011 · doi:10.1088/0305-4470/39/31/010
[50] Yousefi SA, Journal of Vibration and Control 17 pp 2059– (2011) · Zbl 1271.65105 · doi:10.1177/1077546311399950
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.