zbMATH — the first resource for mathematics

Three-dimensional simulations of the cell growth and cytokinesis using the immersed boundary method. (English) Zbl 1364.92009
Summary: In this paper, we present a three-dimensional immersed boundary method to simulate the eukaryotic cell growth and cytokinesis. The proposed model and numerical method are a non-trivial three-dimensional extension of our previous work [J. Math. Biol. 65, No. 4, 653–675 (2012; Zbl 1252.92017)]. Unstructured triangular meshes are employed to discretize the cell membrane. The nodes of the surface mesh constitute a set of Lagrangian control points used to track the motion of the cell. A surface remeshing algorithm is applied to prevent mesh distortion during evolution. We also use a volume-conserving algorithm to maintain the mass of cells in cytokinesis. The ability of the proposed method to simulate cell growth and division processes is numerically demonstrated.

92C37 Cell biology
Full Text: DOI
[1] Glotzer, M., Cleavage furrow positioning, J. Cell Biol., 164, 3, 347-351, (2004)
[2] Campbell, N. A.; Reece, J. B., Biology, (2005), Benjamin Cummings San Francisco, CA
[3] Foucard, L.; Espinet, X.; Benet, E.; Vernerey, F. J., The Role of the Cortical Membrane in Cell Mechanics: Model and Simulation, (2013), John Wiley & Sons Ltd Oxford
[4] Gonze, D., The role of the cortical membrane in cell mechanics: model and simulation, J. Theor. Biol., 325, 22-33, (2013)
[5] Guertin, D. A.; Trautmann, S.; McCollum, D., Cytokinesis in eukaryotes, Microbiol. Mol. Biol. Rev., 66, 155-178, (2002)
[6] Haltera, M.; Elliotta, J. T.; Hubbarda, J. B.; Tonab, A.; Planta, A. L., Cell volume distributions reveal cell growth rates and division times, J. Theor. Biol., 257, 124-130, (2009)
[7] Kim, Y.; Othmer, H. G., A hybrid model of tumor-stromal interactions in breast cancer, Bull. Math. Biol., 75, 1304-1350, (2013) · Zbl 1272.92027
[8] Phllippe, M., Existence of a solution to the cell division eigenproblem, Math. Models Methods Appl. Sci., 16, 1125-1153, (2006) · Zbl 1094.92023
[9] Phillipsa, G. M.A.; Shorten, P. R.; Wake, G. C.; Guan, J., Modeling the effect of insulin-like growth factor-1 on human cell growth, Math. Biosci., 259, 43-54, (2015) · Zbl 1315.92030
[10] Murray, J. D.; Oster, G. F.; Harris, A. K., A mechanical model for mesenchymal morphogenesis, J. Math. Biol., 17, 125-129, (1983) · Zbl 0533.92002
[11] Rappaport, R., Establishment of the mechanism of cytokinesis in animal cells, Int. Rev. Cytol., 105, 245-281, (1986)
[12] Rappaport, R., Cytokinesis in Animal Cells, (1996), Cambridge University Press England
[13] Rejniak, K. A., A single-cell approach in modeling the dynamics of tumor microregions, Math. Biosci. Eng., 2, 643-655, (2012) · Zbl 1079.92046
[14] Rejniak, K. A., An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development, J. Theor. Biol., 247, 186-204, (2007)
[15] Rejniak, K. A.; Anderson, A. R.A., A computational study of the development of epithelial acini: I. sufficient conditions for the formation of a hollow structure, Bull. Math. Biol., 70, 677-712, (2008) · Zbl 1144.92023
[16] Leedale, J.; Herrmannb, A.; Bagnallb, J.; Fercherc, A.; Papkovskyc, D.; Seb, V.; Bearon, R. N., Modeling the dynamics of hypoxia inducible factor-1 (HIF-1) within single cells and 3D cell culture systems, Math. Biosci., 258, 33-43, (2014) · Zbl 1314.92056
[17] Satterwhite, L. L.; Pollard, T. D., Cytokinesis, Curr. Opin. Cell Biol., 4, 43-52, (1992)
[18] Laurent, V. M.; Planus, E.; Fodil, R.; Isabey, D., Mechanical assessment by magnetocytometry of the cytosolic and cortical cytoskeletal compartments in adherent epithelial cells, Biorheology, 40, 235-240, (2003)
[19] Tyson, J. J.; Hannsgen, K. B., Cell growth and division: a deterministic/probabilistic model of the cell cycle, J. Math. Biol., 23, 231-246, (1986) · Zbl 0582.92020
[20] Devore, J. J.; Conrad, G. W.; Rappaport, R., A model for astral stimulation of cytokinesis in animal cells, J. Cell Biol., 109, 2225-2232, (1989)
[21] Dembo, M.; Harlow, F., Cell motion, contractile networks, and the physics of interpenetrating reactive flow, Biophys. J., 50, 109-121, (1986)
[22] Park, A.; Koch, D.; Cardenas, R.; Kas, J.; Shi, C. K., Cell motility and local viscoelasticity of fibroblasts, Biophys. J., 89, 4330-4342, (2005)
[23] Giansanti, M. G.; Gatti, M.; Bonaccorsi, S., The role of centrosomes and astral microtubules during asymmetric division of drosophila neuroblasts, Development, 128, 1137-1145, (2001)
[24] Li, Y. B.; Yun, A.; Kim, J. S., An immersed boundary method for simulating a single axisymmetric cell growth and division, J. Math. Biol., 65, 653-675, (2012) · Zbl 1252.92017
[25] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220-252, (1977) · Zbl 0403.76100
[26] Lai, M. C.; Peskin, C., An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys., 160, 705-719, (2000) · Zbl 0954.76066
[27] Hua, H.; Li, Y. B.; Shin, J.; Song, H.; Kim, J. S., Effect of confinement on droplet deformation in shear flow, Int. J. Comput. Fluid D., 27, 317-331, (2013)
[28] Li, Y. B.; Yun, A.; Lee, D.; Shin, J.; Jeong, D.; Kim, J. S., Three-dimensional volume-conserving immersed boundary model for two-phase fluid flows, Comput. Methods Appl. Mech. Eng., 257, 36-46, (2013) · Zbl 1286.76031
[29] Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P., Molecular Biology of the Cell, (2002), Garland Science New York
[30] Batchelor, G. K., An Introduction to Fluid Dynamics, (2000), Cambridge University Press · Zbl 0958.76001
[31] Lim, S., Dynamics of an open elastic rod with intrinsic curvature and twist in a viscous fluid, Phys. Fluids, 22, 024104, (2010) · Zbl 1183.76313
[32] Persson, P. O.; Stangt, G., A simple mesh generator in MATLAB, SIAM Rev. Soc. Ind. Appl. Math., 46, 329-345, (2004) · Zbl 1061.65134
[33] Persson, P. O., Mesh size functions for implicit geometries and PDE-based gradient limiting, Eng. Comput., 22, 95-109, (2006)
[34] Belkin, M.; Sun, J.; Wang, Y., Discrete Laplace operator on meshed surfaces, Proceedings of 24th Annual ACM Symposium on Computational Geometry, 278-287, (2003) · Zbl 1271.65030
[35] Meyer, M.; Desbrun, M.; Schröder, P.; Barr, A. H., Discrete differential-geometry operators for triangulated 2-manifolds, Math. Vis., 3, 52-58, (2002)
[36] Campbell, N. A.; Reece, J. B.; Urry, L. A.; Cain, M. L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B., Biology, (2008), Pearson/Benjamin Cummings San Francisco
[37] Peskin, C. S.; Printz, B. F., Improved volume conservation in the computation of flows with immersed elastic boundaries, J. Comput. Phys., 105, 1, 33-46, (1993) · Zbl 0762.92011
[38] Griffith, B. E., On the volume conservation of the immersed boundary method, Commun. Comput. Phys., 12, 2, 401-432, (2012) · Zbl 1373.74098
[39] Seo, J. H.; Mittal, R., A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations, J. Comput. Phys., 230, 19, 7347-7363, (2011) · Zbl 1408.76162
[40] Kuzetsov, A. V.; Xiang, P., Numerical investigation of thinning of the intercellular bridge during cell cytokinesis, Int. J. Heat Mass Transf., 33, 1071-1078, (2006)
[41] Hu, W.-F.; Kim, Y.; Lai, M.-C., An immersed boundary method for simulating the dynamics of three-dimensional axisymmetric vesicles in Navier-Stokes flows, J. Comput. Phys., 257, 670-686, (2014) · Zbl 1349.76612
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.