zbMATH — the first resource for mathematics

Split symmetries. (English) Zbl 1364.83058
Summary: We consider six-dimensional supergravity with gauge group \(\mathrm{SO}(10) \times \mathrm U(1)_A\), compactified on the orbifold \(T^2 / \mathbb{Z}_2\). Three quark-lepton generations arise as zero modes of a bulk 16-plet due to magnetic flux of the anomalous \(\mathrm U(1)_A\). Boundary conditions at the four fixed points break \(\mathrm{SO}(10)\) to subgroups whose intersection is the Standard Model gauge group. The gauge and Higgs sector consist of “split” \(\mathrm{SO}(10)\) multiplets. As a consequence of the \(\mathrm U(1)_A\) flux, squarks and sleptons are much heavier than gauge bosons, Higgs bosons, gauginos and higgsinos. We thus obtain a picture similar to “split supersymmetry”. The flavor structure of the quark and lepton mass matrices is determined by the symmetry breaking at the orbifold fixed points.

83E50 Supergravity
81T13 Yang-Mills and other gauge theories in quantum field theory
81V22 Unified quantum theories
81T60 Supersymmetric field theories in quantum mechanics
Full Text: DOI arXiv
[1] Arkani-Hamed, N.; Dimopoulos, S., Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, J. High Energy Phys., 0506, (2005)
[2] Giudice, G.; Romanino, A., Split supersymmetry, Nucl. Phys. B, 699, 65-89, (2004) · Zbl 1123.81410
[3] Witten, E., Symmetry breaking patterns in superstring models, Nucl. Phys. B, 258, 75, (1985)
[4] Witten, E., Some properties of O(32) superstrings, Phys. Lett. B, 149, 351-356, (1984)
[5] Bachas, C., A way to break supersymmetry
[6] Kawamura, Y., Triplet doublet splitting, proton stability and extra dimension, Prog. Theor. Phys., 105, 999-1006, (2001)
[7] Hall, L. J.; Nomura, Y., Gauge unification in higher dimensions, Phys. Rev. D, 64, (2001)
[8] Hebecker, A.; March-Russell, J., A minimal S**1/(Z(2) x Z-prime (2)) orbifold GUT, Nucl. Phys. B, 613, 3-16, (2001) · Zbl 0970.81094
[9] Asaka, T.; Buchmuller, W.; Covi, L., Gauge unification in six-dimensions, Phys. Lett. B, 523, 199-204, (2001)
[10] Hall, L. J.; Nomura, Y.; Okui, T.; Tucker-Smith, D., SO(10) unified theories in six-dimensions, Phys. Rev. D, 65, (2002)
[11] Nishino, H.; Sezgin, E., Matter and gauge couplings of N = 2 supergravity in six-dimensions, Phys. Lett. B, 144, 187, (1984)
[12] Nishino, H.; Sezgin, E., The complete N = 2, d = 6 supergravity with matter and Yang-Mills couplings, Nucl. Phys. B, 278, 353-379, (1986)
[13] Buchmuller, W.; Dierigl, M.; Ruehle, F.; Schweizer, J., Chiral fermions and anomaly cancellation on orbifolds with Wilson lines and flux
[14] Braun, A.; Hebecker, A.; Trapletti, M., Flux stabilization in 6 dimensions: D-terms and loop corrections, J. High Energy Phys., 0702, (2007)
[15] Georgi, H., The state of the art—gauge theories, AIP Conf. Proc., 23, 575-582, (1975)
[16] Fritzsch, H.; Minkowski, P., Unified interactions of leptons and hadrons, Ann. Phys., 93, 193-266, (1975)
[17] Georgi, H.; Glashow, S., Unity of all elementary particle forces, Phys. Rev. Lett., 32, 438-441, (1974)
[18] Pati, J. C.; Salam, A., Lepton number as the fourth color, Phys. Rev. D, 10, 275-289, (1974)
[19] Barr, S. M., A new symmetry breaking pattern for SO(10) and proton decay, Phys. Lett. B, 112, 219, (1982)
[20] Derendinger, J.; Kim, J. E.; Nanopoulos, D. V., Anti-SU(5), Phys. Lett. B, 139, 170, (1984)
[21] Erler, J., Anomaly cancellation in six dimensions, J. Math. Phys., 35, 1819-1833, (1994) · Zbl 0803.58060
[22] Park, D. S.; Taylor, W., Constraints on 6D supergravity theories with abelian gauge symmetry, J. High Energy Phys., 1201, (2012) · Zbl 1306.81269
[23] Asaka, T.; Buchmuller, W.; Covi, L., Exceptional coset spaces and unification in six-dimensions, Phys. Lett. B, 540, 295-300, (2002)
[24] Asaka, T.; Buchmuller, W.; Covi, L., Quarks and leptons between branes and bulk, Phys. Lett. B, 563, 209-216, (2003) · Zbl 1005.81044
[25] Green, M. B.; Schwarz, J. H., Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett. B, 149, 117-122, (1984)
[26] Scrucca, C. A.; Serone, M., Anomalies in field theories with extra dimensions, Int. J. Mod. Phys. A, 19, 2579-2642, (2004) · Zbl 1080.81066
[27] Asaka, T.; Buchmuller, W.; Covi, L., Bulk and brane anomalies in six dimensions, Nucl. Phys. B, 648, 231-253, (2003) · Zbl 1005.81044
[28] Buchmuller, W.; Ludeling, C.; Schmidt, J., Local SU(5) unification from the heterotic string, J. High Energy Phys., 0709, (2007)
[29] Antoniadis, I.; Dimopoulos, S., Splitting supersymmetry in string theory, Nucl. Phys. B, 715, 120-140, (2005) · Zbl 1207.81097
[30] W. Buchmuller, M. Dierigl, F. Ruehle, J. Schweizer, in preparation.
[31] Arkani-Hamed, N.; Dimopoulos, S.; Giudice, G.; Romanino, A., Aspects of split supersymmetry, Nucl. Phys. B, 709, 3-46, (2005) · Zbl 1160.81460
[32] Hall, L. J.; Nomura, Y., Spread supersymmetry, J. High Energy Phys., 1201, (2012) · Zbl 1306.81243
[33] Randall, L.; Sundrum, R., Out of this world supersymmetry breaking, Nucl. Phys. B, 557, 79-118, (1999) · Zbl 1068.81608
[34] Giudice, G. F.; Luty, M. A.; Murayama, H.; Rattazzi, R., Gaugino mass without singlets, J. High Energy Phys., 9812, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.