Lukierski, Jerzy; Škoda, Zoran; Woronowicz, Mariusz \(\kappa\)-deformed covariant quantum phase spaces as Hopf algebroids. (English) Zbl 1364.81170 Phys. Lett., B 750, 401-406 (2015). Summary: We consider the general \(D = 4\) \((10 + 10)\)-dimensional \(\kappa\)-deformed quantum phase space as given by Heisenberg double \(\mathcal{H}\) of \(D = 4\) \(\kappa\)-deformed Poincaré-Hopf algebra \(\mathbb{H}\). The standard \((4 + 4)\)-dimensional \(\kappa\)-deformed covariant quantum phase space spanned by \(\kappa\)-deformed Minkowski coordinates and commuting momenta generators \((\hat{x}_\mu, \hat{p}_\mu)\) is obtained as the subalgebra of \(\mathcal{H}\). We study further the property that Heisenberg double defines particular quantum spaces with Hopf algebroid structure. We calculate by using purely algebraic methods the explicit Hopf algebroid structure of standard \(\kappa\)-deformed quantum covariant phase space in Majid-Ruegg bicrossproduct basis. The coproducts for Hopf algebroids are not unique, determined modulo the coproduct gauge freedom. Finally we consider the interpretation of the algebraic description of quantum phase spaces as Hopf algebroids. Cited in 8 Documents MSC: 81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics 81R05 Finite-dimensional groups and algebras motivated by physics and their representations 16T05 Hopf algebras and their applications PDF BibTeX XML Cite \textit{J. Lukierski} et al., Phys. Lett., B 750, 401--406 (2015; Zbl 1364.81170) Full Text: DOI arXiv References: [1] Meljanac, S.; Samsarov, A.; Štrajn, R., J. High Energy Phys., 1208, (2012) [2] Jurić, T.; Meljanac, S.; Štrajn, R., Phys. Lett. A, 377, 2472, (2013) [3] Jurić, T.; Meljanac, S.; Štrajn, R., Int. J. Mod. Phys. A, 29, 1450022, (2014) [4] Jurić, T.; Kovačević, D.; Meljanac, S., SIGMA, 10, 106, (2014) [5] Meljanac, S.; Škoda, Z., Lie algebra type noncommutative phase spaces are Hopf algebroids · Zbl 1361.16015 [6] Zakrzewski, S., J. Phys. A, 27, 2075, (1994) [7] Majid, S.; Ruegg, H., Phys. Lett. B, 329, 189, (1994) [8] Lukierski, J.; Ruegg, H.; Zakrzewski, J. W., Ann. Phys., 243, 90, (1995) [9] Takeuchi, M., J. Math. Soc. Jpn., 29, 459, (1977) [10] Lu, J. H., Int. J. Math., 7, 47, (1996) [11] Xu, P., Commun. Math. Phys., 216, 539, (2001) [12] Brzeziński, T.; Militaru, G., J. Algebra, 251, 279, (2002) [13] Böhm, G.; Szlachányi, K., J. Algebra, 274, 2, 708, (2004) [14] Majid, S., Foundations of quantum group theory, (1995), Cambridge Univ. Press · Zbl 0857.17009 [15] Lukierski, J.; Ruegg, H.; Nowicki, A.; Tolstoy, V. N., Phys. Lett. B, 264, 331, (1991) [16] Borowiec, A.; Pachoł, A., SIGMA, 6, (2010) [17] Škoda, Z., Int. J. Mod. Phys. A, 26, 4845, (2011) [18] Lukierski, J.; Nowicki, A., (Dobrev, V. K.; Doebner, H. D., Proc. XXI Int. Coll. Group. Theor. Methods in Physics, (1997), Heron Press Sofia), 186 [19] Kosiński, P.; Maślanka, P., The duality between kappa Poincaré algebra and kappa Poincaré group · Zbl 1058.81558 [20] Kosiński, P.; Lukierski, J.; Maślanka, P.; Sobczyk, J., J. Phys. A, J. Math. Phys., 37, 3041, (1996) [21] Lurcat, F., Phys. Rev., Ann. Phys., 106, 342, (1977) [22] Bacry, H.; Kihlberg, A., J. Math. Phys., 10, 2132, (1969) [23] Souriau, J. M., Structure de systemès dynamiques, (1970), Dunod Paris · Zbl 0186.58001 [24] Kunzle, H. P., J. Math. Phys., 15, 1033, (1974) [25] Balachandran, A. P.; Mangano, G.; Skagerstam, B. S.; Stern, A., Gauge symmetries and fiber bundles: application to particle dynamics, Lect. Notes Phys., vol. 188, (1983) · Zbl 0525.53065 [26] Kowalski-Glikman, J.; Nowak, S., Int. J. Mod. Phys. D, 12, 299, (2003) [27] Lukierski, J.; Minnaert, P.; Nowicki, A., Symmetries in science V, (Gruber, B., Proc. of. Symp, August 1992, Bregenz, Austria, (1993), Plennum Press), 469 [28] Chakraborty, B.; Kuznetzova, Z.; Toppan, F., J. Math. Phys., 51, 112102, (2011) [29] Kuznetzova, Z.; Toppan, F., Eur. Phys. J. C, 73, 2483, (2013) [30] Kovačević, D.; Meljanac, S., J. Phys. A, 45, 135208, (2012) [31] Drinfeld, V. G., (Proc. of XX-th Math. Congress, vol. 1, Berkeley, 1985, (1986)), 798 [32] Woronowicz, S. L., Commun. Math. Phys., 111, 613, (1987) [33] Faddeev, L. D.; Reshetkhin, N. Yu.; Takhtajan, L. A., Algebra Anal., 1, 178, (1989) [34] Kosiński, P.; Lukierski, J.; Maślanka, P.; Sobczyk, J., Mod. Phys. Lett. A, 10, 2599, (1995) [35] Kowalski-Glikman, J.; Nowak, S., Phys. Lett. B, 539, 126, (2002) [36] Borowiec, A.; Pachoł, A., J. Phys. A, 43, (2010) [37] Borowiec, A.; Pachoł, A., Theor. Math. Phys., 169, 1611, (2011), see also [38] Pryce, H. M.L., Proc. R. Soc. Lond. A, 195, 62, (1948) [39] Newton, T. D.; Wigner, E. P., Rev. Mod. Phys., 21, 400, (1949) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.