×

zbMATH — the first resource for mathematics

An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model. (English) Zbl 1364.76091
Summary: We propose an original scheme for the time discretization of a triphasic Cahn-Hilliard/Navier-Stokes model. This scheme allows an uncoupled resolution of the discrete Cahn-Hilliard and Navier-Stokes system, which is unconditionally stable and preserves, at the discrete level, the main properties of the continuous model. The existence of discrete solutions is proved, and a convergence study is performed in the case where the densities of the three phases are the same.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Seiler, Material effects on multiphase phenomena in late phases of severe accidents of nuclear reactors, Multiphase Sci Technol 12 pp 117– (2000) · doi:10.1615/MultScienTechn.v12.i2.10
[2] Anderson, Diffuse-interface methods in fluid mechanics, Annu Rev Fluid Mech 30 pp 139– (1998) · Zbl 1398.76051 · doi:10.1146/annurev.fluid.30.1.139
[3] Boyer, A theoretical and numerical model for the study of incompressible mixture flows, Comput Fluids 31 pp 41– (2002) · Zbl 1057.76060 · doi:10.1016/S0045-7930(00)00031-1
[4] Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modeling, J Comput Phys 155 pp 96– (1999) · Zbl 0966.76060 · doi:10.1006/jcph.1999.6332
[5] Liu, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Physica D 179 pp 211– (2003) · Zbl 1092.76069 · doi:10.1016/S0167-2789(03)00030-7
[6] Boyer, Study of a three component Cahn-Hilliard flow model, Math Modell Number Anal 40 pp 653– (2006) · Zbl 1173.35527 · doi:10.1051/m2an:2006028
[7] Elliott, Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix, Physica D 109 pp 242– (1997) · Zbl 0925.35087 · doi:10.1016/S0167-2789(97)00066-3
[8] Kim, Conservative multigrid methods for ternary Cahn-Hilliard systems, Commun Math Sci 2 pp 53– (2004) · Zbl 1085.65093 · doi:10.4310/CMS.2004.v2.n1.a4
[9] Boyer, Numerical schemes for a three component Cahn-Hilliard model, Math Modell Numer Anal 45 pp pp. 697– (2011) · Zbl 1267.76127 · doi:10.1051/m2an/2010072
[10] Guermond, A projection FEM for variable density incompressible flows, J Comput Phys 165 pp 167– (2000) · Zbl 0994.76051 · doi:10.1006/jcph.2000.6609
[11] Boyer, Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows, Transp Porous Media 82 pp 463– (2010) · doi:10.1007/s11242-009-9408-z
[12] F. Boyer P. Fabrie Éléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles, Mathématiques & Applications (Berlin) Mathematics & applications 52 Springer-Verlag Berlin 2006 · Zbl 1105.76003
[13] Liu, Convergence of numerical approximations of the incompressible Navier-Stokes equations with variable density and viscosity, SIAM J Numer Anal 45 pp 1287– (2007) · Zbl 1138.76048 · doi:10.1137/050629008
[14] Feng, Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows, SIAM J Numer Anal 44 pp 1049– (2006) · Zbl 1344.76052 · doi:10.1137/050638333
[15] Kay, Finite element approximation of a Cahn-Hilliard-Navier-Stokes system, Interfaces Free Bound 10 pp 15– (2008) · Zbl 1144.35043 · doi:10.4171/IFB/178
[16] Chorin, Numerical solution of the Navier-Stokes equations, Math Comput 22 pp 745– (1968) · Zbl 0198.50103 · doi:10.1090/S0025-5718-1968-0242392-2
[17] van Kan, A second-order accurate pressure correction scheme for viscous incompressible flow, SIAM J Sci Stat Comput 7 pp 870– (1986) · Zbl 0594.76023 · doi:10.1137/0907059
[18] S. C. Brenner L. R. Scott The mathematical theory of finite element methods, Texts in applied mathematics 15 3rd Ed. Springer New York 2008
[19] Deimling, Nonlinear functional analysis (1985) · doi:10.1007/978-3-662-00547-7
[20] Boyer, A local adaptive refinement method with multigrid preconditionning illustrated by multiphase flows simulations, ESAIM Proc 27 pp 15– (2009) · Zbl 1167.76019 · doi:10.1051/proc/2009018
[21] PELICANS, Collaborative Development environment https://gforge.irsn.fr/gf/project/pelicans/
[22] Fyfe, Surface tension and viscosity with lagrangian hydrodynamics on a triangular mesh, J Comput Phys 76 pp 349– (1988) · Zbl 0639.76043 · doi:10.1016/0021-9991(88)90147-7
[23] Torres, The point-set method: front-tracking without connectivity, J Comput Phys 165 pp 620– (2000) · Zbl 0998.76070 · doi:10.1006/jcph.2000.6635
[24] Herrmann, A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids, J Comput Phys 227 pp 2674– (2008) · Zbl 1388.76252 · doi:10.1016/j.jcp.2007.11.002
[25] Fuster, Numerical simulation of droplets, bubbles and waves: state of the art, Fluid Dyn Res pp 065001– (2009) · Zbl 1423.76002 · doi:10.1088/0169-5983/41/6/065001
[26] Simon, Compact sets in the space Lp(0,T; B), Ann Mat Pura Appl (4) 146 pp 65– (1987) · Zbl 0629.46031 · doi:10.1007/BF01762360
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.