zbMATH — the first resource for mathematics

Some new results on the beta skew-normal distribution. (English) Zbl 1364.62036
Alleva, Giorgio (ed.) et al., Topics in theoretical and applied statistics. Selected papers based on the presentations at the 46th international meeting of the Italian Statistical Society, SIS, Rome, Italy, June 20–22, 2012. Cham: Springer (ISBN 978-3-319-27272-6/hbk; 978-3-319-27274-0/ebook). Studies in Theoretical and Applied Statistics. Selected Papers of the Statistical Societies, 25-36 (2016).
Summary: In this paper we study the Beta skew-normal distribution introduced by the authors [Commun. Stat., Theory Methods 42, No. 12, 2229–2244 (2013; Zbl 1287.60022)]. Some new properties of this distribution are derived including formulae for moments in particular cases and bi-modality properties. Furthermore, we provide expansions for its distribution and density functions. Bounds for the moments and the variance of the Beta skew-normal are derived. Some of the results presented in this work can be extended to the entire family of the Beta-generated distribution introduced by M. C. Jones [Test 13, No. 1, 1–43 (2004; Zbl 1110.62012)].
For the entire collection see [Zbl 1345.62013].

62E15 Exact distribution theory in statistics
60E05 Probability distributions: general theory
62G30 Order statistics; empirical distribution functions
Full Text: DOI
[1] Azzalini, A.: A class of distributions which includes the normal ones. Scand. J. Stat. 12(2), 171–178 (1985) · Zbl 0581.62014
[2] Chiogna, M.: Some results on the scalar skew-normal distribution. J. Ital. Stat. Soc. 7, 1–13 (1998) · doi:10.1007/BF03178918
[3] Eugene, N., Lee, C., Famoye, F.: Beta-normal distribution and its applications. Commun. Stat. Theory Methods 31(4), 497–512 (2002) · Zbl 1009.62516 · doi:10.1081/STA-120003130
[4] Famoye, F., Lee, C., Eugene, N.: Beta-normal distribution: bimodality properties and application. J. Mod. Appl. Stat. Methods 3(1), 85–103 (2004) · doi:10.22237/jmasm/1083370200
[5] Gumbel, E.: The maxima of the mean largest value and of the range. Ann. Math. Stat. 25, 76–84 (1954) · Zbl 0055.12708 · doi:10.1214/aoms/1177728847
[6] Gupta, A.K., Nadarajah, S.: On the moments of the beta-normal distribution. Commun. Stat. Theory Methods 33(1), 1–13 (2005) · Zbl 1210.60018 · doi:10.1081/STA-120026573
[7] Hartley, H., David, H.: Universal bounds for the mean range and extreme observation. Ann. Math. Stat. 25, 85–99 (1954) · Zbl 0055.12801 · doi:10.1214/aoms/1177728848
[8] Jones, M.C.: Families of distributions arising from distributions of order statistics. Test 13(1), 1–43 (2004) · Zbl 1110.62012 · doi:10.1007/BF02602999
[9] Kong, L., Lee, C., Sepanski, J.H.: On the properties of beta-gamma distribution. J. Mod. Appl. Stat. Methods 6(1), 187–211 (2007)
[10] Lindsay, B.G.: Mixture Models: Theory, Geometry and Applications. IMS, Hayward (1995) · Zbl 1163.62326
[11] Mameli, V.: Two generalizations of the skew-normal distribution and two variants of McCarthy’s Theorem. Doctoral dissertation, Cagliari University, Italy (2012)
[12] Mameli, V., Musio, M.: A generalization of the skew-normal distribution: the beta skew-normal. Commun. Stat. Theory Methods, 42(12), 2229–2244 (2013) · Zbl 1287.60022 · doi:10.1080/03610926.2011.607530
[13] Papadatos, N.: Maximum variance of order statistics. Ann. Inst. Stat. Math. 47(1), 185–193 (1995) · Zbl 0822.62041 · doi:10.1007/BF00773423
[14] Pescim, R.R., Demétrio, C.G.B., Cordeiro, G.M., Ortega, E.M.M., Urbanoa, M.R.: The beta generalized half-normal distribution. Comput. Stat. Data Anal. 54(4), 945–957 (2010) · Zbl 05689645 · doi:10.1016/j.csda.2009.10.007
[15] Rêgo, L.C., Cintra, R.J., Cordeiro, G.M.: On some properties of the beta normal distribution. Commun. Stat. Theory Methods 41(20), 3722–3738 (2012) · Zbl 1253.60018 · doi:10.1080/03610926.2011.568156
[16] Sharafi, M., Behboodian, J.: The Balakrishnan skew-normal density. Stat. Pap. 49, 769–778 (2008) · Zbl 1309.60008 · doi:10.1007/s00362-006-0038-z
[17] Steck, G.P.: Orthant probabilities for the equicorrelated multivariate normal distribution. Biometrika 49(3–4), 433–445 (1962) · Zbl 0114.10606 · doi:10.1093/biomet/49.3-4.433
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.