Convergence of the 2D Euler-\(\alpha\) to Euler equations in the Dirichlet case: indifference to boundary layers. (English) Zbl 1364.35277

Summary: In this article we consider the Euler-\(\alpha\) system as a regularization of the incompressible Euler equations in a smooth, two-dimensional, bounded domain. For the limiting Euler system we consider the usual non-penetration boundary condition, while, for the Euler-\(\alpha\) regularization, we use velocity vanishing at the boundary. We also assume that the initial velocities for the Euler-\(\alpha\) system approximate, in a suitable sense, as the regularization parameter \(\alpha \to 0\), the initial velocity for the limiting Euler system. For small values of \(\alpha\), this situation leads to a boundary layer, which is the main concern of this work. Our main result is that, under appropriate regularity assumptions, and despite the presence of this boundary layer, the solutions of the Euler-\(\alpha\) system converge, as \(\alpha \to 0\), to the corresponding solution of the Euler equations, in \(L^2\) in space, uniformly in time. We also present an example involving parallel flows, in order to illustrate the indifference to the boundary layer of the \(\alpha \to 0\) limit, which underlies our work.


35Q35 PDEs in connection with fluid mechanics
35Q31 Euler equations
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
35A35 Theoretical approximation in context of PDEs
Full Text: DOI arXiv


[1] Marsden, J.; Ratiu, T.; Shkoller, S., The geometry and analysis of the averaged Euler equations and a new diffeomorphism group, Geom. Funct. Anal., 10, 582-599, (2000) · Zbl 0979.58004
[2] Shkoller, S., Analysis on groups of diffeomorphisms of manifolds with boundary and the averaged motion of a fluid, J. Differential Geom., 55, 145-191, (2000) · Zbl 1044.35061
[3] Busuioc, A. V., On second grade fluids with vanishing viscosity, C. R. Acad. Sci. Paris I, 328, 1241-1246, (1999), Also in Port. Math. (N.S.) 59 (1) (2002) 47-65 · Zbl 0935.76004
[4] D. Cioranescu, O. El Hacène, Existence and uniqueness for fluids of second grade, in: H. Brezis and J.L. Lions (Eds.), Pitman Research Notes in Mathematics, Boston, Vol. 109, 1984, pp. 178-197.
[5] Kato, T.; Lai, C. Y., Nonlinear evolution equations and the Euler flow, J. Funct. Anal., 56, 15-28, (1984) · Zbl 0545.76007
[6] Temam, R., On the Euler equations of incompressible perfect fluids, J. Funct. Anal., 20, 32-43, (1975) · Zbl 0309.35061
[7] T. Kato, Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary, in: S.S. Chern (Ed.), Seminar on Nonlinear Partial Differential Differential Equations, Mathematical Sciences Research Institute Publications, New York, 1984, pp. 85-98.
[8] Matsui, S., Example of zero viscosity limit for two-dimensional nonstationary Navier-Stokes flows with boundary, Japan J. Indust. Appl. Math., 11, 155-170, (1994) · Zbl 0797.76011
[9] Bona, J.; Wu, J., The zero-viscosity limit of the 2D Navier-Stokes equations, Stud. Appl. Math., 109, 265-278, (2002) · Zbl 1141.35431
[10] Lopes Filho, M.; Mazzucato, A.; Nussenzveig Lopes, H., Vanishing viscosity limit for incompressible flow inside a rotating circle, Physica D, 237, 1324-1333, (2008) · Zbl 1143.76416
[11] Lopes Filho, M. C.; Mazzucato, A. L.; Nussenzeig Lopes, H. J.; Taylor, M., Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows, Bull. Braz. Math. Soc., 39, 471-513, (2008) · Zbl 1178.35288
[12] Mazzucato, A. L.; Taylor, M., Vanishing viscosity plane parallel channel flow and related singular perturbation problems, Anal. PDE, 1, 35-93, (2008) · Zbl 1160.35329
[13] Mazzucato, A. L.; Taylor, M., Vanishing viscosity limits for a class of circular pipe flows, Comm. Partial Differential Equations, 36, 328-361, (2011) · Zbl 1220.35121
[14] Caflisch, R.; Sammartino, M., Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. existence for Euler and Prandtl equations, Comm. Math. Phys., 192, 2, 433-461, (1998) · Zbl 0913.35102
[15] Caflisch, R.; Sammartino, M., Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. construction of the Navier-Stokes solution, Comm. Math. Phys., 192, 2, 463-491, (1998) · Zbl 0913.35103
[16] Maekawa, Y., On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane, Comm. Pure Appl. Math., 67, 7, 1045-1128, (2014) · Zbl 1301.35092
[17] Bardos, C.; Titi, E. S., Mathematics and turbulence: where do we stand?, J. Turbul., 14, 3, 42-76, (2013)
[18] Lopes Filho, M. C., Boundary layers and the vanishing viscosity limit for incompressible 2D flow, (Lin, Fanghua; Wang, Xueping; Zhang, Ping, Lect. Anal. Nonlin. PDEs, Vol. 1, (2009), HEP and International Press Beijing, Boston), 1-31, (Org.) · Zbl 1291.35189
[19] E, Weinan, Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation, Acta Math. Sin. (Engl. Ser.), 16, 207-218, (2000) · Zbl 0961.35101
[20] P. Constantin, I. Kukavica, V. Vicol, On the inviscid limit of the Navier-Stokes equations, 2014. arXiv:1403.5748v2 [math.AP]. · Zbl 1309.35073
[21] Kelliher, J., On kato’s conditions for vanishing viscosity, Indiana Univ. Math. J., 56, 4, 1711-1721, (2007) · Zbl 1125.76014
[22] Temam, R.; Wang, X., The convergence of the solutions of the Navier-Stokes equations to that of the Euler equations, Appl. Math. Lett., 10, 29-33, (1997) · Zbl 0888.35077
[23] Wang, X., A Kato type theorem on zero viscosity limit of Navier-Stokes flows, Indiana Univ. Math. J., 50, 223-241, (2001), Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000) · Zbl 0991.35059
[24] Holm, D. D.; Marsden, J. E.; Ratiu, T. S., The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137, 1-81, (1998) · Zbl 0951.37020
[25] Holm, D. D.; Marsden, J. E.; Ratiu, T. S., Euler-Poincaré models of ideal fluids with nonlinear dispersion, Phys. Rev. Lett., 88, 4173-4176, (1998)
[26] Dunn, J. E.; Fosdick, R. L., Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade, Arch. Ration. Mech. Anal., 56, 191-252, (1974) · Zbl 0324.76001
[27] Cao, C.; Holm, D. D.; Titi, E. S., On the Clark-\(\alpha\) model of turbulence: global regularity and long-time dynamics, J. Turbul., 6, 20, 1-11, (2005)
[28] Chen, S.; Foias, C.; Holm, D. D.; Olson, E.; Titi, E. S.; Wynne, S., Camassa-Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett., 81, 5338-5341, (1998) · Zbl 1042.76525
[29] Chen, S.; Foias, C.; Holm, D. D.; Olson, E.; Titi, E. S.; Wynne, S., The Camassa-Holm equations and turbulence, Physica D, 133, 49-65, (1999) · Zbl 1194.76069
[30] Chen, S.; Foias, C.; Holm, D. D.; Olson, E.; Titi, E. S.; Wynne, S., A connection between the Camassa-Holm equations and turbulent flows in channels and pipes, Phys. Fluids, 11, 2343-2353, (1999) · Zbl 1147.76357
[31] Cheskidov, A.; Holm, D. D.; Olson, E.; Titi, E. S., On a Leray-\(\alpha\) model of turbulence, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 461, 629-649, (2005) · Zbl 1145.76386
[32] Foias, C.; Holm, D. D.; Titi, E. S., The Navier-Stokes-\(\alpha\) model of fluid turbulence, Physica D, 153, 505-519, (2001) · Zbl 1037.76022
[33] Foias, C.; Holm, D. D.; Titi, E. S., The three dimensional viscous Camassa-Holm equations and their relation to the Navier-Stokes equations and the turbulence theory, J. Dynam. Differential Equations, 14, 1-35, (2002) · Zbl 0995.35051
[34] Bardos, C.; Linshiz, J.; Titi, E. S., Global regularity for a Birkhoff-rott-\(\alpha\) approximation of the dynamics of vortex sheets of the 2D Euler equations, Physica D, 237, 1905-1911, (2008) · Zbl 1143.76384
[35] Bardos, C.; Linshiz, J. S.; Titi, E. S., Global regularity and convergence of a Birkhoff-rott-\(\alpha\) approximation of the dynamics of vortex sheets of the 2D Euler equations, Comm. Pure Appl. Math., 63, 6, 697-746, (2010) · Zbl 1218.76012
[36] Oliver, M.; Shkoller, S., The vortex blob method as a second-grade non-Newtonian fluid, Comm. Partial Differential Equations, 26, 1-2, 295-314, (2001) · Zbl 0983.35106
[37] Linshiz, J. S.; Titi, E. S., On the convergence rate of the Euler-\(\alpha\), an inviscid second-grade complex fluid, model to Euler equations, J. Stat. Phys., 138, 305-332, (2010) · Zbl 1375.35348
[38] Busuioc, A. V.; Ratiu, T. S., The second grade fluid and averaged Euler equations with Navier-slip boundary conditions, Nonlinearity, 16, 3, 1119-1149, (2003) · Zbl 1026.76004
[39] Iftimie, D., Remarques sur la limite \(\alpha \rightarrow 0\) pour LES fluides de grade 2, C. R. Acad. Sci. Paris I, 334, 1, 83-86, (2002), Also in Studies in Mathematics and its Applications, 31 Nonlinear partial Differential Equations and their Applications. College de France Seminar, Volume XIV. North Holland, 2002 · Zbl 1004.76003
[40] Cao, Y.; Titi, E. S., On the rate of convergence of the two-dimensional \(\alpha\)-models of the turbulence to the Navier-Stokes equations, Numer. Funct. Anal. Optim., 30, 11-12, 1231-1271, (2009) · Zbl 1192.35129
[41] Busuioc, A. V.; Iftimie, D.; Lopes Filho, M. C.; Nussenzveig Lopes, H. J., Incompressible Euler as a limit of complex fluid models with Navier boundary conditions, J. Differential Equations, 252, 624-640, (2012) · Zbl 1232.35122
[42] M. Lopes Filho, H. Nussenzveig Lopes, E.S. Titi, A. Zang, On the approximation of 2D Euler equations by the second-grade fluid equations with Dirichlet boundary conditions (in preparation). · Zbl 1328.35153
[43] Galdi, G. P.; Sequeira, A., Further existence results for classical solutions of the equations of a second-grade fluid, Arch. Ration. Mech. Anal., 128, 297-312, (1994) · Zbl 0833.76005
[44] Constantin, P.; Foias, C., Navier-Stokes equations, (1988), The University of Chicago Press Chicago, London · Zbl 0687.35071
[45] Evans, L. C., (Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, (1997), American Mathematical Society)
[46] Galdi, G. P., An introduction to the mathematical theory of the Navier-Stokes equations: steady-state problems, (2011), Springer New York · Zbl 1245.35002
[47] Kouranbaeva, S.; Oliver, M., Global well-posedness for the averaged Euler equations in two dimensions, Physica D, 138, 197-209, (2000) · Zbl 0959.76008
[48] Diperna, R. J.; Lions, P. L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98, 511-547, (1989) · Zbl 0696.34049
[49] Ilyin, A. A., Attractors for Navier-Stokes equations in domains with finite measure, Nonlinear Anal. TMA, 27, 5, 605-616, (1996) · Zbl 0859.35090
[50] Métiver, G., Valeurs propres d’opérateurs definis par la restriction de systemes variationnelles a des sous-espaces, J. Math. Pures Appl., 9, 57, 133-156, (1978) · Zbl 0328.35029
[51] Acheson, D. J., Elementary fluid dynamics (corr.), (2003), Oxford University Press, Oxford Inc. New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.