×

zbMATH — the first resource for mathematics

Graph theory and the Jahn-Teller theorem. (English) Zbl 1364.05045
Summary: The Jahn-Teller (JT) theorem predicts spontaneous symmetry breaking and lifting of degeneracy in degenerate electronic states of (nonlinear) molecular and solid-state systems. In these cases, degeneracy is lifted by geometric distortion. Molecular problems are often modelled using spectral theory for weighted graphs, and the present paper turns this process around and reformulates the JT theorem for general vertex- and edge weighted graphs themselves. If the eigenvectors and eigenvalues of a general graph are considered as orbitals and energy levels (respectively) to be occupied by electrons, then degeneracy of states can be resolved by a non-totally symmetric re-weighting of edges and, where necessary, vertices. This leads to the conjecture that whenever the spectrum of a graph contains a set of bonding or anti-bonding degenerate eigenvalues, the roots of the Hamiltonian matrix over this set will show a linear dependence on edge distortions, which has the effect of lifting the degeneracy. When the degenerate level is non-bonding, distortions of vertex weights have to be included to obtain a full resolution of the eigenspace of the degeneracy. Explicit treatments are given for examples of the octahedral graph, where the degeneracy to be lifted is forced by symmetry, and the phenalenyl graph, where the degeneracy is accidental in terms of the automorphism group.
MSC:
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berry, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 392 (1802) pp 45– (1984) · Zbl 1113.81306 · doi:10.1098/rspa.1984.0023
[2] 11 pp 305– (1966) · doi:10.1080/00268976600101141
[3] Nouveau Journal de Chimie 9 pp 757– (1985)
[4] The Journal of Chemical Physics 87 pp 5374– (1987) · doi:10.1063/1.453656
[5] J CHEM PHYS 93 pp 1221– (1990) · doi:10.1063/1.459187
[6] Nature; Physical Science (London) 353 pp 52– (1991) · doi:10.1038/353052a0
[7] Bulletin of the Chemical Society of Japan 80 pp 1229– (2007) · doi:10.1246/bcsj.80.1229
[8] STRUCTURE AND BONDING vol. 71 pp 125– (1989) · doi:10.1007/3-540-50775-2_4
[9] MATH PROC R IRISH ACAD 98A pp 139– (1998)
[10] Coulson, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 169 (938) pp 413– (1939) · Zbl 0020.32602 · doi:10.1098/rspa.1939.0006
[11] Coulson, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 191 (1024) pp 39– (1947) · Zbl 0029.18602 · doi:10.1098/rspa.1947.0102
[12] 36 pp 193– (1940)
[13] ADVANCES IN QUANTUM CHEMISTRY vol. 44 pp 219– (2003) · doi:10.1016/S0065-3276(03)44014-8
[14] PCCP 4 pp 1105– (2002) · doi:10.1039/b109712c
[15] Journal of Chemical Education 66 pp 471– (1989) · doi:10.1021/ed066p471
[16] Jahn, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 161 (905) pp 220– (1937) · Zbl 0017.09404 · doi:10.1098/rspa.1937.0142
[17] Longuet-Higgins, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 344 (1637) pp 147– (1975) · doi:10.1098/rspa.1975.0095
[18] 36 pp 125– (1978) · doi:10.1080/00268977800101451
[19] J CHEM PHYS 124 pp 024314– (2006) · doi:10.1063/1.2150816
[20] Proceedings of the Conference - Secondary Ion Mass Spectrometry vol. 97 pp 99– (2010)
[21] Shaik, Chemical Reviews 101 (5) pp 1501– (2001) · doi:10.1021/cr990363l
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.