zbMATH — the first resource for mathematics

Algebraic structures related to nilpotent minimum algebras and rough sets. (English) Zbl 1364.03090
Summary: Equipping NM-algebras with a Brouwer-like negation \(\sim\), we introduce a kind of algebra under the name BZNM-algebra in the present paper and investigate its algebraic properties in detail. By means of the Brouwer-like negation \(\sim\) and the internal Kleene negation \(\neg\) in NM-algebras, two types of modal operators \(\mu\) and \(\nu\) on BZNM-algebras are defined. For any element \(a\) of BZNM-algebra, \(\mu(a)\) and \(\nu(a)\) turn out to be the best approximation of \(a\) from the bottom and the top, respectively, with Boolean skeleton serving as the collection of sharp elements. It isalso shown that these two modal operators turn to have an \(S_5\) behavior. Additionally, various types of sharp elements with respect to the negation operators including \(\sim\), \(\neg\), \(\flat\), (an anti-intuitionistic negation) are defined, and the relationship between these sets and that of \(\otimes\)-idempotent (\(\oplus\)-idempotent) elements are also investigated. It is then proved that the proposed BZNM-algebras are indeed equivalent to NMalgebras under a suitable transformation of operators. Furthermore, a special kind of BZNM-algebras, i.e., BZNM\(^3\)-algebras, is investigated and its equivalent characterizations are given. A new type of rough approximation operators are proposed, and it is shown that such a pair of approximation operators is equivalent to the defined operators \(\mu\) and \(\nu\). Finally, two interesting examples of BZNM-algebras are presented.

03G25 Other algebras related to logic
06D35 MV-algebras
Full Text: DOI
[1] Busaniche, Free nilpotent minimum algebras, Math Logic Q 52 pp 219– (2006) · Zbl 1101.03043 · doi:10.1002/malq.200510027
[2] Bianchi, A temporal semantics for Nilpotent Minimum logic, Int J Approx Reason 55 pp 391– (2014) · Zbl 1316.03010 · doi:10.1016/j.ijar.2013.10.007
[3] Cattaneo, Brouwer-Zadeh posets and three valued ukasiewicz posets, Fuzzy Sets Syst 33 pp 165– (1989) · Zbl 0682.03036 · doi:10.1016/0165-0114(89)90239-X
[4] Cattaneo, Heyting Wajsberg algebras as an abstract environment linking fuzzy and rough sets, Lect Notes Artif Intell 2475 pp 77– (2002) · Zbl 1013.03073
[5] Cattaneo, Algebraic structures related to many valued logical systems. Part I: Heyting Wajsberg algebras, Fundam Inform 63 pp 331– (2004) · Zbl 1090.03035
[6] Cattaneo, Algebraic structures related to many valued logical systems. part II: Equivalence among some widespread structures, Fundam Inform 63 pp 357– (2004) · Zbl 1092.03035
[7] Cattaneo, BZMVdM algebras and stonian MV-algebras (applications to fuzzy sets and rough approximations), Fuzzy Sets Syst 108 pp 201– (1999) · Zbl 0948.06008 · doi:10.1016/S0165-0114(97)00328-X
[8] Cattaneo, Algebraic models of deviant modal operators based on de Morgan and Kleene lattices, Inform Sci 181 pp 4075– (2011) · Zbl 1242.03088 · doi:10.1016/j.ins.2011.05.008
[9] Cattaneo, Rough Sets in Knowledge Discovery 1: Methodology and Applications pp 59– (1998)
[10] Ciucci, On the axioms of residuated structures: Independence, dependencies and rough approximations, Fundam Inform 69 pp 359– (2006) · Zbl 1100.06011
[11] Chakraborty, Membership function based rough set, Int J Approx Reason 55 pp 402– (2014) · Zbl 1316.03027 · doi:10.1016/j.ijar.2013.10.009
[12] Cintula, Fuzzy logics with an additional involutive negation, Fuzzy Sets Syst 161 pp 390– (2010) · Zbl 1189.03028 · doi:10.1016/j.fss.2009.09.003
[13] Cintula, Residuated logics based on strict triangular norms with an involutive negation, Math Logic Q 52 pp 269– (2006) · Zbl 1165.03326 · doi:10.1002/malq.200510032
[14] Cintula, Distinguished algebraic semantics for t-norm based fuzzy logics: Methods and algebraic equivalencies, Ann Pure Appl Logic 160 pp 53– (2009) · Zbl 1168.03052 · doi:10.1016/j.apal.2009.01.012
[15] Davey, Introduction to lattices and order (2002) · Zbl 1002.06001 · doi:10.1017/CBO9780511809088
[16] Esteva, Residuated fuzzy logics with an involutive negation, Arch Math Logic 39 pp 103– (2000) · Zbl 0965.03035 · doi:10.1007/s001530050006
[17] Esteva, The L\(\Pi\) and L\(\Pi\)\(\tfrac12\) logics: Two complete fuzzy systems joining ukasiewicz and Product Logics, Arch Math Logic 40 pp 39– (2001) · Zbl 0966.03022 · doi:10.1007/s001530050173
[18] Esteva, Monoidal t-norm based logic: Towards a logic for left-continuous t-norms, Fuzzy Sets Syst 124 pp 271– (2001) · Zbl 0994.03017 · doi:10.1016/S0165-0114(01)00098-7
[19] Flaminio, T-norm-based logics with an independent involutive negation, Fuzzy Sets Syst 157 pp 3125– (2006) · Zbl 1114.03015 · doi:10.1016/j.fss.2006.06.016
[20] Gasse, The standard completeness of interval-valued monoidal t-norm based logic, Inform Sci 189 pp 63– (2012) · Zbl 1258.03030 · doi:10.1016/j.ins.2011.11.043
[21] Hájek, Metamathematics of fuzzy logic (1998) · Zbl 0937.03030 · doi:10.1007/978-94-011-5300-3
[22] Orłowska, Incomplete information: Rough set analysis (1998) · Zbl 0886.68127 · doi:10.1007/978-3-7908-1888-8
[23] Pei, On equivalent forms of fuzzy logic systems NM and IMTL, Fuzzy Sets Syst 138 pp 187– (2003) · Zbl 1031.03047 · doi:10.1016/S0165-0114(02)00382-2
[24] Pei, Simplification and independence of axioms of fuzzy logic systems IMTL and NM, Fuzzy Sets Syst 152 pp 303– (2005) · Zbl 1072.03017 · doi:10.1016/j.fss.2004.12.002
[25] She, Rough approximation operators on R0-algebras (nilpotent minimum algebras) with an application in formal logic L*, Inform Sci 277 pp 71– (2014) · Zbl 1354.03098 · doi:10.1016/j.ins.2014.02.005
[26] Wang, Fuzzy logic and fuzzy reasoning, Xi’an, Proceedings of the Seventh National Many-valued and Fuzzy Logic Academic Conference pp 82– (1996)
[27] Wang, A formal deductive system for fuzzy prepositional calculus, Chin Sci Bull 42 pp 1521– (1997) · Zbl 0886.03019 · doi:10.1007/BF02882835
[28] Wang, Introduction to Mathematical Logic and Resolution Principle (2009)
[29] Yao, Generalization of rough sets using modal logics, Intell Automat Soft Comput Int J 2 pp 103– (1996) · doi:10.1080/10798587.1996.10750660
[30] Yao, On generalizing rough set theory, pp, Proceedings of the Ninth International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, LNCS(LNAI) 2639 pp 44– (2003) · Zbl 1026.68669 · doi:10.1007/3-540-39205-X_6
[31] Yao, Proceedings of Rough Sets and Current Trends in Computing (RSCTC’12), Lecture Notes in Computer Science pp 1– (2012) · Zbl 1404.68177 · doi:10.1007/978-3-642-32115-3_1
[32] Zhou, Stone-like representation theorems and three-valued filters in R0-algebras (nilpotent minimum algebras), Fuzzy Sets Syst 162 pp 1– (2011) · Zbl 1213.03081 · doi:10.1016/j.fss.2010.09.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.