×

zbMATH — the first resource for mathematics

New stability and stabilization conditions for T-S fuzzy systems with time delay. (English) Zbl 1361.93031
Summary: This paper is concerned with the problem of the stability analysis and stabilization for Takagi-Sugeno (T-S) fuzzy systems with time delay. A new Lyapunov-Krasovskii functional containing the fuzzy line-integral Lyapunov function and the simple functional is chosen. By using a recently developed Wirtinger-based integral inequality and introducing slack variables, less conservative conditions in terms of linear matrix inequalities (LMIs) are derived. Several examples are given to show the advantages of the proposed results.

MSC:
93C42 Fuzzy control/observation systems
93D15 Stabilization of systems by feedback
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Takagi, T.; Sugeno, M., Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst. Man Cybern., 15, 1, 116-132, (1985) · Zbl 0576.93021
[2] Tanaka, K.; Wang, H., Fuzzy control systems design and analysis: A linear matrix inequality approach, (2001), John Wiley & Sons New York, NY
[3] Feng, G., A survey on analysis and design of model-based fuzzy control systems, IEEE Trans. Fuzzy Syst., 14, 5, 676-697, (2006)
[4] Tanaka, K.; Hori, T.; Wang, H. O., A multiple Lyapunov function approach to stabilization of fuzzy control systems, IEEE Trans. Fuzzy Syst., 11, 4, 582-589, (2003)
[5] Tanaka, K.; Ohtake, H.; Wang, H. O., A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions, IEEE Trans. Fuzzy Syst., 15, 3, 333-341, (2007)
[6] Gu, K.; Kharitonov, V. L.; Chen, J., Stability of time-delay systems, (2003), Springer-Verlag Berlin, Germany · Zbl 1039.34067
[7] Rhee, B. J.; Won, S., A new fuzzy Lyapunov function approach for a Takagi-sugeno fuzzy control system design, Fuzzy Sets Syst., 157, 9, 1211-1228, (2006) · Zbl 1090.93025
[8] Mozelli, L. A.; Palhares, R. M.; Souza, F. O.; Mendes, E. M.A. M., Reducing conservativeness in recent stability conditions of TS fuzzy systems, Automatica, 45, 6, 1580-1583, (2009) · Zbl 1166.93344
[9] Mozelli, L. A.; Palhares, R. M.; Avellar, G. S.C., A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems, Inf. Sci., 179, 8, 1149-1162, (2009) · Zbl 1156.93355
[10] Mozelli, L. A.; Souza, F. O.; Palhares, R. M., A new discretized Lyapunov-krasovskii functional for stability analysis and control design of time-delayed TS fuzzy systems, Int. J. Robust Nonlinear Control, 21, 1, 93-105, (2011) · Zbl 1207.93095
[11] Tognetti, E. S.; Oliveira, R. C.L. F.; Peres, P. L.D., Selective \(H_2\) and \(H_\infty\) stabilization of Takagi-sugeno fuzzy systems, IEEE Trans. Fuzzy Syst., 19, 5, 890-900, (2011)
[12] Tognetti, E. S.; Oliveira, R. C.L. F.; Peres, P. L.D., Reduced-order dynamic output feedback control of continuous-time T-S fuzzy systems, Fuzzy Sets Syst., 207, 16, 27-44, (2012) · Zbl 1252.93077
[13] Tognetti, E. S.; Oliveira, R. C.L. F.; Peres, P. L.D., LMI relaxations for \(H_\infty\) and \(H_2\) static output feedback of Takagi-sugeno continuous-time fuzzy systems, J. Control Autom. Electr. Syst., 24, 1-2, 33-45, (2013)
[14] Campos, V. C.S.; Souza, F. O.; TĂ´rres, L. A.B.; Palhares, R. M., New stability conditions based on piecewise fuzzy Lyapunov functions and tensor product transformations, IEEE Trans. Fuzzy Syst., 21, 4, 748-760, (2013)
[15] Lo, J. C.; Zhang, C. M., Relaxation analysis via line integral, (Proceedings of the 2009 IEEE International Conference on Fuzzy Systems, Jeju Island, Korea, (2009)), 1264-1269
[16] Lin, C.; Wang, Q. G.; Lee, T. H., Stability and stabilization of a class of fuzzy time-delay descriptor systems, IEEE Trans. Fuzzy Syst., 14, 4, 542-551, (2006)
[17] Lin, C.; Wang, Q. G.; Lee, T. H.; He, Y., Stability conditions for time-delay fuzzy systems using fuzzy weighting-dependent approach, IET Control Theory Appl., 1, 1, 127-132, (2007)
[18] Lin, C.; Wang, Q. G.; Lee, T. H.; He, Y., LMI approach to analysis and control of Takagi-sugeno fuzzy systems with time delay, (2007), Springer-Verlag New York/Berlin, Heidelberg, Germany · Zbl 1119.93002
[19] Lin, C.; Wang, Q. G.; Lee, T. H.; He, Y.; Chen, B., Observer-based \(H_\infty\) control for T-S fuzzy systems with time delay: delay-dependent design method, IEEE Trans. Syst. Man Cybern., Part B, Cybern., 37, 4, 1030-1038, (2007)
[20] Lin, C.; Wang, Q. G.; Lee, T. H.; He, Y., Design of observer-based \(H_\infty\) control for fuzzy time-delay systems, IEEE Trans. Fuzzy Syst., 16, 2, 534-543, (2008)
[21] Lin, C.; Wang, Q. G.; Lee, T. H.; He, Y.; Chen, B., Observer-based \(H_\infty\) fuzzy control design for T-S fuzzy systems with state delays, Automatica, 44, 3, 868-874, (2008) · Zbl 1283.93164
[22] Chen, B.; Lin, C.; Liu, X. P.; Tong, S. C., Guaranteed cost control of T-S fuzzy systems with input delay, Int. J. Robust Nonlinear Control, 18, 12, 1230-1256, (2008) · Zbl 1284.93136
[23] Chen, B.; Liu, X. P.; Tong, S. C.; Lin, C., Observer-based stabilization of T-S fuzzy systems with input delay, IEEE Trans. Fuzzy Syst., 16, 3, 652-663, (2008)
[24] Seuret, A.; Gouaisbaut, F., Wirtinger-based integral inequality: application to time-delay systems, Automatica, 49, 9, 2860-2866, (2013) · Zbl 1364.93740
[25] Lin, C.; Wang, Q. G.; Lee, T. H., Delay-dependent LMI conditions for stability and stabilization of T-S fuzzy systems with bounded time-delay, Fuzzy Sets Syst., 157, 9, 1229-1247, (2006) · Zbl 1090.93024
[26] Chen, B.; Liu, X. P., Delay-dependent robust \(H_\infty\) control for TS fuzzy systems with time delay, IEEE Trans. Fuzzy Syst., 13, 4, 544-556, (2005)
[27] Chen, B.; Liu, X. P.; Tong, S. C., New delay-dependent stabilization conditions of T-S fuzzy systems with constant delay, Fuzzy Sets Syst., 158, 20, 2209-2224, (2007) · Zbl 1122.93048
[28] Guan, X. P.; Chen, C. L., Delay-dependent guaranteed cost control for T-S fuzzy systems with time delays, IEEE Trans. Fuzzy Syst., 12, 4, 236-249, (2004) · Zbl 1142.93363
[29] Tian, E.; Peng, C., Delay-dependent stability analysis and synthesis of uncertain T-S fuzzy systems with time-varying delay, Fuzzy Sets Syst., 157, 4, 544-559, (2006) · Zbl 1082.93031
[30] Wu, H. N.; Li, H. X., New approach to delay-dependent stability analysis and stabilization for continuous-time fuzzy systems with time-varying delay, IEEE Trans. Fuzzy Syst., 15, 3, 482-493, (2007)
[31] Yoneyama, J., New delay-dependent approach to robust stability and stabilization for Takagi-sugeno fuzzy time-delay systems, Fuzzy Sets Syst., 158, 20, 2225-2237, (2007) · Zbl 1122.93050
[32] Zhao, Y.; Gao, H.; Lam, J.; Du, B., Stability and stabilization of delayed T-S fuzzy systems: a delay partitioning approach, IEEE Trans. Fuzzy Syst., 17, 4, 750-762, (2009)
[33] Peng, C.; Tian, Y. C.; Tian, E., Improved delay-dependent robust stabilization conditions of uncertain T-S fuzzy systems with time-varying delay, Fuzzy Sets Syst., 159, 20, 2713-2729, (2008) · Zbl 1170.93344
[34] Peng, C.; Yue, D.; Tian, Y. C.; Tian, E. G., On delay-dependent approach for robust stability and stabilization of T-S fuzzy systems with constant delay and uncertainties, IEEE Trans. Fuzzy Syst., 17, 5, 1143-1156, (2009)
[35] Zhao, L.; Gao, H.; Karimi, H. R., Robust stability and stabilization of uncertain T-S fuzzy systems with time-varying delay: an input-output approach, IEEE Trans. Fuzzy Syst., 21, 5, 883-897, (2013)
[36] Souza, F. O.; Mozelli, L. A.; Palhares, R. M., On stability and stabilization of T-S fuzzy time-delayed systems, IEEE Trans. Fuzzy Syst., 17, 6, 1450-1455, (2009)
[37] Guelton, K.; Guerra, T. M.; Bernal, M.; Bouarar, T.; Manamanni, N., Comments on fuzzy control systems design via fuzzy Lyapunov functions, IEEE Trans. Syst. Man Cybern., Part B, Cybern., 40, 3, 970-972, (2010)
[38] Kammler, W. D., A first course in Fourier analysis, (2007), Cambridge University Press Cambridge · Zbl 1144.42001
[39] Khalil, H. K., Nonlinear systems, (2002), Prentice-Hall Upper Saddle River, NJ
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.