×

zbMATH — the first resource for mathematics

Entanglement universality of two-qubit X-states. (English) Zbl 1360.81071
Summary: We demonstrate that for every two-qubit state there is a X-counterpart, i.e., a corresponding two-qubit X-state of same spectrum and entanglement, as measured by concurrence, negativity or relative entropy of entanglement. By parametrizing the set of two-qubit X-states and a family of unitary transformations that preserve the sparse structure of a two-qubit X-state density matrix, we obtain the parametric form of a unitary transformation that converts arbitrary two-qubit states into their X-counterparts. Moreover, we provide a semi-analytic prescription on how to set the parameters of this unitary transformation in order to preserve concurrence or negativity. We also explicitly construct a set of X-state density matrices, parametrized by their purity and concurrence, whose elements are in one-to-one correspondence with the points of the concurrence versus purity (CP) diagram for generic two-qubit states.

MSC:
81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations
PDF BibTeX Cite
Full Text: DOI
References:
[1] Ekert, A. K., Phys. Rev. Lett., 67, 661, (1991)
[2] Ursin, R.; Tiefenbacher, F.; Schmitt-Manderbach, T.; Weier, H.; Scheidl, T.; Lindenthal, M.; Blauensteiner, B.; Jennewein, T.; Perdigues, J.; Trojek, P.; Omer, B.; Furst, M.; Meyenburg, M.; Rarity, J.; Sodnik, Z.; Barbieri, C.; Weinfurter, H.; Zeilinger, A., Nat. Phys., 3, 481, (2007)
[3] Bennett, C. H.; Wiesner, S. J., Phys. Rev. Lett., 69, 2881, (1992)
[4] Barreiro, J. T.; Wei, T. C.; Kwiat, P. G., Nat. Phys., 4, 282, (2008)
[5] Bennett, C. H.; Brassard, G.; Crepeau, C.; Jozsa, R.; Peres, A.; Wootters, W. K., Phys. Rev. Lett., 70, 1895, (1993)
[6] Ma, X. S.; Herbst, T.; Scheidl, T.; Wang, D.; Kropatschek, S.; Naylor, W.; Wittmann, B.; Mech, A.; Kofler, J.; Anisimova, E.; Makarov, V.; Jennewein, T.; Ursin, R.; Zeilinger, A., Nature, 489, 269, (2012)
[7] Shor, P. W., SIAM J. Comput., 26, 1484, (1997)
[8] Martín-López, E.; Laing, A.; Lawson, T.; Alvarez, R.; Zhou, X. Q.; O’Brien, J. L., Nature Photon., 6, 773, (2012)
[9] Yu, T.; Eberly, J. H., Quantum Inf. Comput., 7, 459, (2007)
[10] Nielsen, M. A.; Chuang, I. L., Quantum computation and quantum information, (2000), Cambridge University Press Cambridge · Zbl 1049.81015
[11] Werner, R. F., Phys. Rev. A, 40, 4277, (1989) · Zbl 1371.81145
[12] Horodecki, M.; Horodecki, P., Phys. Rev. A, 59, 4206, (1999)
[13] Ishizaka, S.; Hiroshima, T., Phys. Rev. A, 62, 22310, (2000)
[14] Verstraete, F.; Audenaert, K.; Bie, T. D.; Moor, B. D., Phys. Rev. A, 64, 012316, (2001)
[15] Munro, W. J.; James, D. F.V.; White, A. G.; Kwiat, P. G., Phys. Rev. A, 64, 030302, (2001)
[16] Wei, T. C.; Nemoto, K.; Goldbart, P. M.; Kwiat, P. G.; Munro, W. J.; Verstraete, F., Phys. Rev. A, 67, 022110, (2003)
[17] Retzker, A.; Cirac, J. I.; Reznik, B., Phys. Rev. Lett., 94, 050504, (2005)
[18] Rau, A. R.P., J. Phys. A-Math. Gen., 42, 412002, (2009)
[19] Quesada, N.; Al-Qasimi, A.; James, D. F.V., J. Modern Opt., 59, 1322, (2012)
[20] S.R. Hedemann, Evidence that all states are unitarily equivalent to X states of the same entanglement, 2013. Available from: quant-ph/1310.7038/.
[21] A.C.S. Costa, R.M. Angelo, M.W. Beims, Hierarchy of quantum correlation measures for two-qubit X states, 2013. Available from: quant-ph/1311.5702/.
[22] Rau, A. R.P., Phys. Rev. A, 61, 032301, (2000)
[23] Zhang, Y. S.; Huang, Y. F.; Li, C. F.; Guo, G. C., Phys. Rev. A, 66, 062315, (2002)
[24] Barbieri, M.; De Martini, F.; Di Nepi, G.; Mataloni, P., Phys. Rev. Lett., 92, 177901, (2004)
[25] Cinelli, C.; Di Nepi, G.; De Martini, F.; Barbieri, M.; Mataloni, P., Phys. Rev. A, 70, 022321, (2004)
[26] Peters, N. A.; Altepeter, J. B.; Branning, D.; Jeffrey, E. R.; Wei, T. C.; Kwiat, P. G., Phys. Rev. Lett., 92, 133601, (2004)
[27] Agarwal, G. S.; Kapale, K. T., Phys. Rev. A, 73, 022315, (2006)
[28] Jin, J. S.; Li, Z. N.; Yu, C. S.; Song, H. S., Physica A, 392, 2830, (2013)
[29] Bernstein, D. S., Matrix mathematics: theory, facts and formulas, (2009), Princeton University Press · Zbl 1183.15001
[30] Peres, A., Phys. Rev. Lett., 77, 1413, (1996)
[31] Horodecki, M.; Horodecki, P.; Horodecki, R., Phys. Lett. A, 223, 1, (1996)
[32] Ziman, M.; Bužek, V., Phys. Rev. A, 72, 052325, (2005)
[33] Zyczkowski, K.; Horodecki, P.; Sanpera, A.; Lewenstein, M., Phys. Rev. A, 58, 883, (1998)
[34] Wang, J.; Batelaan, H.; Podany, J.; Starace, A. F., J. Phys. B: At. Mol. Opt. Phys., 39, 4343, (2006)
[35] Wootters, W. K., Phys. Rev. Lett., 80, 2245, (1998)
[36] Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K., Rev. Modern Phys., 81, 865, (2009)
[37] Eisert, J.; Plenio, M., J. Modern Opt., 46, 145, (1999)
[38] Virmani, S.; Plenio, M. B., Phys. Lett. A, 268, 31, (2000)
[39] Apostol, T. M., Calculus: one-variable calculus, with an introduction to linear algebra, (1967), John Wiley & Sons, Inc · Zbl 0148.28201
[40] Nielsen, M. A., Phys. Rev. A, 6, 064301, (2000)
[41] Donald, M. J.; Horodecki, M., Phys. Lett. A, 264, 257, (1999)
[42] Fannes, M., Comm. Math. Phys., 31, 291, (1973)
[43] Audenaert, K., (Krueger, O.; Werner, R. F., Some Open Problems in Quantum Information Theory, (2001)), Available from quant-ph/0504166/
[44] Hashemi Rafsanjani, S. M.; Huber, M.; Broadbent, C. J.; Eberly, J. H., Phys. Rev. A, 86, 062303, (2012)
[45] Agarwal, S.; Hashemi Rafsanjani, S. M., Int. J. Quantum Inf., 11, 1350043, (2013)
[46] S.M. Hashemi Rafsanjani, Personal communication, 2014.
[47] Eisert, J., (Krueger, O.; Werner, R. F., Some Open Problems in Quantum Information Theory, (2003)), Available from: quant-ph/0504166/
[48] Bennett, C. H.; Bernstein, H. J.; Popescu, S.; Schumacher, B., Phys. Rev. A, 53, 2046, (1996)
[49] Popescu, S.; Rohrlich, D., Phys. Rev. A, 56, R3319(R), (1997)
[50] Horodecki, M., Quantum Inf. Comput., 1, 3, (2001)
[51] Bennett, C. H.; DiVincenzo, D. P.; Smolin, J. A.; Wootters, W. K., Phys. Rev. A, 54, 3824, (1996)
[52] Wootters, W. K., Quantum Inf. Comput, 1, 27, (2001)
[53] Vedral, V.; Plenio, M.; Jacobs, K.; Knight, P. L., Phys. Rev. A, 56, 4452, (1997)
[54] Umegaki, H., Kodai Math. Sem. Rep., 14, 59, (1962)
[55] Vedral, V.; Plenio, M. B., Phys. Rev. A, 57, 1619, (1998)
[56] Bennett, C. H.; Brassard, G.; Popescu, S.; Schumacher, B.; Smolin, J. A.; Wootters, W. K., Phys. Rev. Lett., 76, 722, (1996)
[57] Řeháček, J.; Hradil, Z., Phys. Rev. Lett., 90, 127904, (2003)
[58] Zinchenko, Y.; Friedland, S.; Gour, G., Phys. Rev. A, 82, 052336, (2010)
[59] Vedral, V.; Plenio, M. B.; Rippin, M. A.; Knight, P. L., Phys. Rev. Lett., 78, 2275, (1997)
[60] Verstraete, F.; Audenaert, K.; Dehaene, J.; Moor, B. D., J. Phys. A-Math. Gen., 34, 10327, (2001) · Zbl 0993.81009
[61] Chen, X.-Y.; Meng, L.-M.; Jiang, L.-Z.; Li, X.-J., Chin. Phys. Lett., 22, 2755, (2005)
[62] Audenaert, K.; De Moor, B.; Vollbrecht, K. G.H.; Werner, R. F., Phys. Rev. A, 66, 032310, (2002)
[63] Ishizaka, S., Phys. Rev. A, 67, 060301(R), (2003)
[64] Miranowicz, A.; Ishizaka, S., Phys. Rev. A, 78, 032310, (2008)
[65] Friedland, S.; Gour, G., J. Math. Phys., 52, 052201, (2011)
[66] Jie-Hui, H.; Nian-Hua, L.; Jiang-Tao, L.; Tian-Bao, Y.; Xian, H., Chin. Phys. B, 19, 110307, (2010)
[67] Vidal, G.; Werner, R. F., Phys. Rev. A, 65, 032314, (2002)
[68] Horodecki, P.; Horodecki, R., Quantum Inf. Comput., 1, 45, (2001) · Zbl 1187.81032
[69] Sanpera, A.; Tarrach, R.; Vidal, G., Phys. Rev. A, 58, 826, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.