×

zbMATH — the first resource for mathematics

Numerical simulation of single droplet dynamics in three-phase flows using ISPH. (English) Zbl 1360.76216
Summary: In this study, a new surface tension formulation for modeling incompressible, immiscible three-phase fluid flows in the context of incompressible smoothed particle hydrodynamics (ISPH) in two dimensions has been proposed. A continuum surface force model is employed to transform local surface tension force to a volumetric force while physical surface tension coefficients are expressed as the sum of phase specific surface tension coefficients, facilitating the implementation of the proposed method at triple junctions where all three phases are present. Smoothed color functions at fluid interfaces along with artificial particle displacement throughout the computational domain are combined to increase accuracy and robustness of the model. In order to illustrate the effectiveness of the proposed method, several numerical simulations have been carried out and results are compared to analytical data available in literature. Results obtained by simulations are compatible with analytical data, demonstrating that the ISPH scheme proposed here is capable of handling three-phase flows accurately.

MSC:
76M28 Particle methods and lattice-gas methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201-225, (1981) · Zbl 0462.76020
[2] Gueyffier, D.; Li, J.; Nadim, A.; Scardovelli, R.; Zaleski, S., Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows, J. Comput. Phys., 152, 423-456, (1999) · Zbl 0954.76063
[3] Gao, D.; Morley, N. B.; Dhir, V., Numerical simulation of wavy falling film flow using VOF method, J. Comput. Phys., 192, 624-642, (2003) · Zbl 1047.76569
[4] Sussman, M.; Almgren, A. S.; Bell, J. B.; Colella, P.; Howell, L. H.; Welcome, M. L., An adaptive level set approach for incompressible two-phase flows, J. Comput. Phys., 148, 81-124, (1999) · Zbl 0930.76068
[5] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed—algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49, (1988) · Zbl 0659.65132
[6] Sethian, J. A.; Smereka, P., Level set methods for fluid interfaces, Annu. Rev. Fluid Mech., 35, 341-372, (2003) · Zbl 1041.76057
[7] Chella, R.; Vinals, J., Mixing of a two-phase fluid by cavity flow, Phys. Rev. E, 53, 3832-3840, (1996)
[8] Badalassi, V. E.; Ceniceros, H. D.; Banerjee, S., Computation of multiphase systems with phase field models, J. Comput. Phys., 190, 371-397, (2003) · Zbl 1076.76517
[9] Unverdi, S. O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100, 25-37, (1992) · Zbl 0758.76047
[10] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y. J., A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169, 708-759, (2001) · Zbl 1047.76574
[11] Monaghan, J. J., Simulating free-surface flows with SPH, J. Comput. Phys., 110, 399-406, (1994) · Zbl 0794.76073
[12] Monaghan, J. J.; Kocharyan, A., SPH simulation of multiphase flow, Comput. Phys. Comm., 87, 225-235, (1995) · Zbl 0923.76195
[13] Monaghan, J. J.; Cas, R. A.F.; Kos, A. M.; Hallworth, M., Gravity currents descending a ramp in a stratified tank, J. Fluid Mech., 379, 39-70, (1999) · Zbl 0938.76506
[14] Landrini, M.; Colagrossi, A.; Greco, M.; Tulin, M. P., Gridless simulations of splashing processes and near-Shore bore propagation, J. Fluid Mech., 591, 183-213, (2007) · Zbl 1125.76326
[15] Grenier, N.; Antuono, M.; Colagrossi, A.; Le Touze, D.; Alessandrini, B., An Hamiltonian interface SPH formulation for multi-fluid and free surface flows, J. Comput. Phys., 228, 8380-8393, (2009) · Zbl 1333.76056
[16] Ferrari, A.; Fraccarollo, L.; Dumbser, M.; Toro, E. F.; Armanini, A., Three-dimensional flow evolution after a dam break, J. Fluid Mech., 663, 456-477, (2010) · Zbl 1205.76228
[17] Xu, X.; Ouyang, J.; Jiang, T.; Li, Q., Numerical simulation of 3D-unsteady viscoelastic free surface flows by improved smoothed particle hydrodynamics method, J. Non-Newton. Fluid Mech., 177, 109-120, (2012)
[18] Szewc, K.; Pozorski, J.; Minier, J. P., Simulations of single bubbles rising through viscous liquids using smoothed particle hydrodynamics, Int. J. Multiph. Flow, 50, 98-105, (2013)
[19] Merriman, B.; Bence, J. K.; Osher, S. J., Motion of multiple junctions—a level set approach, J. Comput. Phys., 112, 334-363, (1994) · Zbl 0805.65090
[20] Smith, K. A.; Solis, F. J.; Chopp, D. L., A projection method for motion of triple junctions by level sets, Interfaces Free Bound., 4, 263-276, (2002) · Zbl 1112.76437
[21] Zhang, M., Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method, J. Comput. Phys., 229, 7238-7259, (2010) · Zbl 1426.76623
[22] Muradoglu, M.; Tasoglu, S., A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls, Comput. Fluids, 39, 615-625, (2010) · Zbl 1242.76250
[23] Boyer, F.; Lapuerta, C., Study of a three component Cahn-Hilliard flow model, ESAIM Math. Model. Numer. Anal., 40, 653-687, (2006) · Zbl 1173.35527
[24] Kim, J., Phase field computations for ternary fluid flows, Comput. Methods Appl. Mech. Eng., 196, 4779-4788, (2007) · Zbl 1173.76423
[25] Hu, X. Y.; Adams, N. A., A multi-phase SPH method for macroscopic and mesoscopic flows, J. Comput. Phys., 213, 844-861, (2006) · Zbl 1136.76419
[26] Cummins, S. J.; Rudman, M., An SPH projection method, J. Comput. Phys., 152, 584-607, (1999) · Zbl 0954.76074
[27] Brackbill, J. U.; Kothe, D. B.; Zemach, C., A continuum method for modeling surface-tension, J. Comput. Phys., 100, 335-354, (1992) · Zbl 0775.76110
[28] Zainali, A.; Tofighi, N.; Shadloo, M. S.; Yildiz, M., Numerical investigation of newtonian and non-Newtonian multiphase flows using ISPH method, Comput. Methods Appl. Mech. Engrg., 254, 99-113, (2013) · Zbl 1297.76137
[29] Morris, J. P., Simulating surface tension with smoothed particle hydrodynamics, Internat. J. Numer. Methods Fluids, 33, 333-353, (2000) · Zbl 0985.76072
[30] Shadloo, M. S.; Zainali, A.; Sadek, S. H.; Yildiz, M., Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies, Comput. Methods Appl. Mech. Eng., 200, 1008-1020, (2011) · Zbl 1225.76242
[31] Morris, J. P., A study of the stability properties of smooth particle hydrodynamics, Publ. Astron. Soc. Aust., 13, 97-102, (1996), Workshop on Magnetic Fields, Disks and Jets, Canberra, Australia, Apr 18-19, 1994
[32] Monaghan, J. J.; Lattanzio, J. C., A refined particle method for astrophysical problems, Astron. Astrophys., 149, 135-143, (1985) · Zbl 0622.76054
[33] Hosseini, S. M.; Feng, J. J., Pressure boundary conditions for computing incompressible flows with SPH, J. Comput. Phys., 230, 7473-7487, (2011) · Zbl 1408.76413
[34] Yildiz, M.; Rook, R. A.; Suleman, A., SPH with the multiple boundary tangent method, Int. J. Numer. Methods Eng., 77, 1416-1438, (2009) · Zbl 1156.76427
[35] Colagrossi, A.; Bouscasse, B.; Antuono, M.; Marrone, S., Particle packing algorithm for SPH schemes, Comput. Phys. Commun., 183, 1641-1653, (2012) · Zbl 1307.65140
[36] Kim, J., Phase-field models for multi-component fluid flows, Commun. Comput. Phys., 12, 613-661, (2012) · Zbl 1373.76030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.