×

Patrol mobile robots and chaotic trajectories. (English) Zbl 1360.70012

Summary: This paper presents a study of special trajectories attainment for mobile robots based on the dynamical features of chaotic systems. This method of trajectories construction is envisaged for missions for terrain exploration, with the specific purpose of search or patrol, where fast scanning of the robot workspace is required. We propose the imparting of chaotic motion behavior to the mobile robot by means of a planner of goal positions sequence based on an area-preserving chaotic map. As a consequence, the robot trajectories seem highly opportunistic and unpredictable for external observers, and the trajectories’s characteristics ensure the quick scanning of the patrolling space. The kinematic modeling and the closed-loop control of the robot are described. The results and discussion of numerical simulations close the paper.

MSC:

70E60 Robot dynamics and control of rigid bodies
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. Palacin, J. A. Salse, I. Valganon, and X. Clua, “Building a mobile robot for a floor-cleaning operation in domestic environments,” IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 5, pp. 1418-1424, 2004. · doi:10.1109/TIM.2004.834093
[2] J. H. Suh, Y. J. Lee, and K. S. Lee, “Object-transportation control of cooperative AGV systems based on virtual-passivity decentralized control algorithm,” Journal of Mechanical Science and Technology, vol. 19, no. 9, pp. 1720-1730, 2005.
[3] B. Rooks, “Robotics outside the metals industries,” Industrial Robot, vol. 32, no. 3, pp. 205-208, 2005. · doi:10.1108/01439910510593866
[4] MobileRobots Inc., “PatrolBot Brochure,” Amherst, NH, USA, January 2006, http://www.MobileRobots.com/.
[5] E. Krotkov and J. Blitch, “The defense advanced research projects agency (DARPA) tactical mobile robotics program,” The International Journal of Robotics Research, vol. 18, no. 7, pp. 769-776, 1999. · Zbl 05422231 · doi:10.1177/02783649922066457
[6] H. R. Everett and D. W. Gage, “From laboratory to warehouse: security robots meet the realworld,” The International Journal of Robotics Research, vol. 18, no. 7, pp. 760-768, 1999. · Zbl 05422088 · doi:10.1177/02783649922066448
[7] H. R. Everett, “Robotic security systems,” IEEE Instrumentation & Measurement Magazine, vol. 6, no. 4, pp. 30-34, 2003. · doi:10.1109/MIM.2003.1251480
[8] F. Capezio, A. Sgorbissa, and R. Zaccaria, “GPS-based localization for a surveillance UGV in outdoor areas,” in Proceedings of the 5th IEEE International Workshop on Robot Motion and Control (RoMoCo ’05), pp. 157-162, Dymaczewo, Poland, June 2005.
[9] D. M. Carroll, C. Nguyen, H. R. Everett, and B. Frederick, “Development and testing for physical securtiy robots,” in Unmanned Ground Vehicle Technology VII, vol. 5804 of Proceedings of SPIE, pp. 550-559, Orlando, Fla, USA, March 2005. · doi:10.1117/12.606235
[10] C. Choi, S.-G. Hong, J.-H. Shin, I.-K. Jeong, and J.-J. Lee, “Dynamical path-planning algorithm of a mobile robot using chaotic neuron model,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS ’95), vol. 2, pp. 456-461, Pittsburgh, Pa, USA, August 1995.
[11] M. Islam and K. Murase, “Chaotic dynamics of a behavior-based miniature mobile robot: effects of environment and control structure,” Neural Networks, vol. 18, no. 2, pp. 123-144, 2005. · Zbl 02183859 · doi:10.1016/j.neunet.2004.09.002
[12] U. Nehmzow, “Quantitative analysis of robot-environment interaction-towards “scientific mobile robotics”,” Robotics and Autonomous Systems, vol. 44, no. 1, pp. 55-68, 2003. · Zbl 01963320 · doi:10.1016/S0921-8890(03)00010-1
[13] Y. Nakamura and A. Sekiguchi, “The chaotic mobile robot,” IEEE Transaction on Robotics and Automation, vol. 17, no. 6, pp. 898-904, 2001. · doi:10.1109/70.976022
[14] A. Jansri, K. Klomkarn, and P. Sooraksa, “On comparison of attractors for chaotic mobile robots,” in Proceedings of the 30th IEEE Annual Conference of Industrial Electronics Society (IECON ’04), vol. 3, pp. 2536-2541, Busan, Korea, November 2004. · doi:10.1109/IECON.2004.1432201
[15] Y. Bae, “Target searching method in the chaotic mobile robot,” in Proceedings of the 23rd IEEE Digital Avionics Systems Conference (DASC ’04), vol. 2, pp. 12.D.7-12.1-9, Salt Lake City, Utah, USA, October 2004.
[16] L. S. Martins-Filho, R. F. Machado, R. Rocha, and V. S. Vale, “Commanding mobile robots with chaos,” in ABCM Symposium Series in Mechatronics, J. C. Adamowski, E. H. Tamai, E. Villani, and P. E. Miyagi, Eds., vol. 1, pp. 40-46, ABCM, Rio de Janeiro, Brazil, 2004.
[17] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Studies in Nonlinearity, Westview Press, Boulder, Colo, USA, 2nd edition, 2003. · Zbl 1025.37001
[18] A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion, vol. 38 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1983. · Zbl 0506.70016
[19] J. D. Meiss, “Symplectic maps, variational principles, and transport,” Reviews of Modern Physics, vol. 64, no. 3, pp. 795-848, 1992. · Zbl 1160.37302 · doi:10.1103/RevModPhys.64.795
[20] B. V. Chirikov, “A universal instability of many-dimensional oscillator systems,” Physics Reports, vol. 52, no. 5, pp. 263-379, 1979. · doi:10.1016/0370-1573(79)90023-1
[21] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots, MIT Press, Cambridge, Mass, USA, 2004.
[22] A. Astolfi, “Exponential stabilization of a mobile robot,” in Proceedings of the 3rd European Control Conference (ECC ’95), pp. 3092-3097, Rome, Italy, September 1995.
[23] C. Canudas de Wit and O. J. Sørdalen, “Exponential stabilization of mobile robots with nonholonomic constraints,” IEEE Transactions on Automatic Control, vol. 37, no. 11, pp. 1791-1797, 1992. · Zbl 0778.93077 · doi:10.1109/9.173153
[24] S.-O. Lee, Y.-J. Cho, M. Hwang-Bo, B.-J. You, and S.-R. Oh, “A stable target-tracking control for unicycle mobile robots,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS ’00), vol. 3, pp. 1822-1827, Takamatsu, Japan, October-November 2000. · doi:10.1109/IROS.2000.895236
[25] J.-J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice- Hall, Upper Saddle River, NJ, USA, 1991. · Zbl 0753.93036
[26] V. J. Lumelsky and T. Skews, “Incorporating range sensing in the robot navigation function,” IEEE Transactions on Systems, Man and Cybernetics, vol. 20, no. 5, pp. 1058-1069, 1990. · doi:10.1109/21.59969
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.