×

zbMATH — the first resource for mathematics

Deriving three-way decisions from intuitionistic fuzzy decision-theoretic rough sets. (English) Zbl 1360.68841
Summary: Three-way decisions with decision-theoretic rough sets (DTRSs) provide a new methodology to confront risk decision problems. The risk is associated with the loss function of DTRSs. Under the intuitionistic fuzzy environment, we combine the loss functions of DTRSs with intuitionistic fuzzy sets (IFSs). Considering the new evaluation format of loss function with intuitionistic fuzzy numbers (IFNs), we propose a naive model of intuitionistic fuzzy decision-theoretic rough sets (IFDTRSs) and elaborate its relevant properties in advance. At this point, a critical issue is the determination of three-way decisions. In the frame of IFDTRSs, we then explore deriving three-way decisions for single-period decision making. Based on the positive and negative characteristics of IFNs, we design three strategies to address IFNs and derive corresponding three-way decisions. Meanwhile, we compare the three strategies and summarize their own applicabilities. In order to accommodate multi-period scenarios, we further extend IFDTRSs to the multi-period situation. With the aid of the results of the single period decision making, we analyze three aggregation operations of IFDTRSs for multi-period information, which are DIFWA, DIFPA and DIFOA, respectively. By comparing these operations, an algorithm for deriving three-way decisions in multi-period decision making is designed. These results help us to make a reasonable decision in the intuitionistic fuzzy environment. Finally, an example is presented to elaborate on three-way decisions with IFDTRSs.

MSC:
68T37 Reasoning under uncertainty in the context of artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atanassov, K. T., Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20, 87-96, (1986) · Zbl 0631.03040
[2] Azam, N.; Yao, J. T., Analyzing uncertainties of probabilistic rough set regions with game-theoretic rough sets, Int. J. Approx. Reason., 55, 142-155, (2014) · Zbl 1316.68168
[3] Boran, F. E.; Akay, D., A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition, Inform. Sci., 255, 45-57, (2014) · Zbl 1320.68179
[4] Chaira, T.; Ray, A. K., A new measure using intuitionistic fuzzy set theory and its application to edge detection, Appl. Soft Comput., 8, 919-927, (2008)
[5] Chen, T. Y., Bivariate models of optimism and pessimism in multi-criteria decision-making based on intuitionistic fuzzy sets, Inform. Sci., 181, 2139-2165, (2011) · Zbl 1231.90231
[6] Duda, R. O.; Hart, P. E., Pattern classification and scene analysis, (1973), Wiley Press New York · Zbl 0277.68056
[7] Deng, X. F.; Yao, Y. Y., An information-theoretic interpretation of thresholds in probabilistic rough sets, (Li, T.; etal., RSKT 2012, LNAI 7414, (2012), Springer-Verlag Berlin), 369-378
[8] Deng, X. F.; Yao, Y. Y., Decision-theoretic three-way approximations of fuzzy sets, Inform. Sci., 279, 702-715, (2014) · Zbl 1354.03073
[9] Greco, S.; Slowinski, R.; Yao, Y. Y., Bayesian decision theory for dominance-based rough set approach, (Yao, J. T.; etal., LNAI 4481, RSKT2007, (2007), Springer Berlin), 134-141
[10] Hu, B. Q., Three-way decisions space and three-way decisions, Inform. Sci., 281, 21-52, (2014) · Zbl 1355.68256
[11] Huang, B.; Guo, C. X.; Zhang, Y. L.; Li, H. X.; Zhou, X. Z., Intuitionistic fuzzy multigranulation rough sets, Inform. Sci., 277, 299-320, (2014) · Zbl 1354.03076
[12] Jia, X. Y.; Liao, W. H.; Tang, Z. M.; Shang, L., Minimum cost attribute reduction in decision-theoretic rough set models, Inform. Sci., 219, 151-167, (2013) · Zbl 1293.91049
[13] Jia, X. Y.; Tang, Z. M.; Liao, W. H.; Shang, L., On an optimization representation of decision-theoretic rough set model, Int. J. Approx. Reason., 55, 156-166, (2014) · Zbl 1316.68179
[14] Li, Y.; Zhang, C.; Swan, J. R., An information filtering model on the web and its application in jobagent, Knowl.-Based Syst., 13, 285-296, (2000)
[15] Li, D. F., Multiattribute decision making models and methods using intuitionistic fuzzy sets, J. Comput. Syst. Sci., 70, 73-85, (2005) · Zbl 1066.90052
[16] W. Li, D.Q. Miao, W.L. Wang, N. Zhang, Hierarchical rough decision theoretic framework for text classification, in: Proceedings of the 9th IEEE International Conference on Cognitive Informatics, 2010, pp. 484-489.
[17] Li, H. X.; Zhou, X. Z., Risk decision making based on decision-theoretic rough set: a three-way view decision model, Int. J. Comput. Intell. Syst., 4, 1-11, (2011)
[18] Li, H. X.; Zhou, X. Z.; Zhao, J. B.; Huang, B., Cost-sensitive classification based on decision-theoretic rough set model, (Li, T.; etal., RSKT 2012, LNAI 7414, (2012), Springer-Verlag Berlin), 379-388
[19] Li, H. X.; Zhou, X. Z.; Zhao, J. B.; Liu, D., Non-monotonic attribute reduction in decision-theoretic rough sets, Fundam. Inform., 126, 1-18, (2013)
[20] C Liang, D.; Liu, D.; Pedrycz, W.; Hu, P., Triangular fuzzy decision-theoretic rough sets, Int. J. Approx. Reason., 54, 8, 1087-1106, (2013) · Zbl 1316.68183
[21] D.C. Liang, D. Liu, A novel risk decision-making based on decision-theoretic rough sets under hesitant fuzzy information. IEEE Trans. Fuzzy Syst., doi: http://dx.doi.org/10.1109/TFUZZ.2014.2310495.
[22] C Liang, D.; Liu, D., Systematic studies on three-way decisions with interval-valued decision-theoretic rough sets, Inform. Sci., 276, 186-203, (2014)
[23] Lingras, P.; Chen, M.; Miao, D. Q., Rough cluster quality index based on decision theory, IEEE Trans. Knowl. Data Eng., 21, 7, 1014-1026, (2009)
[24] Liu, H. W.; Wang, G. J., Multi-criteria decision-making methods based on intuitionistic fuzzy sets, Eur. J. Oper. Res., 179, 220-233, (2007) · Zbl 1163.90558
[25] Liu, D.; Yao, Y. Y.; Li, T. R., Three-way investment decisions with decision-theoretic rough sets, Int. J. Comput. Intell. Syst., 4, 66-74, (2011)
[26] Liu, D.; Li, T. R.; Ruan, D., Probabilistic model criteria with decision-theoretic rough sets, Inform. Sci., 181, 3709-3722, (2011)
[27] D. Liu, T.R. Li, D.C. Liang, Decision-theoretic rough sets with probabilistic distribution. In: Proceedings of the 7th International Conference on Rough Sets and Knowledge Technology, LNAI 7414, 2012, pp. 389-398.
[28] Liu, D.; Li, T. R.; Liang, D. C., Three-way government decision analysis with decision-theoretic rough sets, Int. J. Uncertainty Fuzziness Knowl.-Based Syst., 20, Supp. 1, 119-132, (2012)
[29] D. Liu, T.R. Li, D.C. Liang, Three-way decisions in dynamic decision-theoretic rough sets, in: Proceedings of the 8th International Conference on Rough Sets and Knowledge Technology, LNAI 8171, 2013, pp. 288-299.
[30] Liu, D.; Liu, T. R.; Liang, D. C., Incorporating logistic regression to decision-theoretic rough sets for classifications, Int. J. Approx. Reason., 55, 197-210, (2014) · Zbl 1316.68185
[31] Ma, X. A.; Wang, G. Y.; Yu, H.; Li, T. R., Decision region distribution preservation reduction in decision-theoretic rough set model, Inform. Sci., 278, 614-640, (2014) · Zbl 1354.68264
[32] Min, F.; Zhu, W., Attribute reduction of data with error ranges and test costs, Inform. Sci., 211, 48-67, (2012) · Zbl 1250.68227
[33] Pawlak, Z., Rough sets, Int. J. Comput. Inform. Sci., 11, 341-356, (1982) · Zbl 0501.68053
[34] Pedrycz, W., Granular computing: analysis and design of intelligent systems, (2013), CRC Press/Francis Taylor Boca Raton
[35] Qian, Y. H.; Liang, J. Y.; Yao, Y. Y.; Dang, C. Y., MGRS: a multigranulation rough set, Inform. Sci., 180, 949-970, (2010) · Zbl 1185.68695
[36] Qian, Y. H.; Zhang, H.; Sang, Y. L.; Liang, J. Y., Multigranulation decision-theoretic rough sets, Int. J. Approx. Reason., 55, 225-237, (2014) · Zbl 1316.68190
[37] Sun, B. Z.; Ma, W. M.; Zhao, H. Y., Decision-theoretic rough fuzzy set model and application, Inform. Sci., 283, 180-196, (2014) · Zbl 1355.68260
[38] Vlachos, I. K.; Sergiadis, G. D., Intuitionistic fuzzy information-applications to pattern recognition, Pattern Recogn. Lett., 28, 197-206, (2007)
[39] Xu, Z. S.; Yager, R. R., Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. General Syst., 35, 4, 417-433, (2006) · Zbl 1113.54003
[40] Xu, Z. S., Intuitionistic fuzzy aggregation operators, IEEE Trans. Fuzzy Syst., 15, 6, 1179-1187, (2007)
[41] Xu, Z. S., Intuitionistic preference relations and their application in group decision making, Inform. Sci., 177, 2363-2379, (2007) · Zbl 1286.91043
[42] Xu, Z. S.; Chen, J.; Wu, J. J., Clustering algorithm for intuitionistic fuzzy sets, Inform. Sci., 178, 3775-3790, (2008) · Zbl 1256.62040
[43] Xu, Z. S., On multi-period multi-attribute decision making, Knowl.-Based Syst., 21, 164-171, (2008)
[44] Xu, Z. S.; Yager, R. R., Dynamic intuitionistic fuzzy multi-attribute decision making, Int. J. Approx. Reason., 48, 246-262, (2008) · Zbl 1185.91073
[45] Xu, Z. S., Choquet integrals of weighted intuitionistic fuzzy information, Inform. Sci., 180, 726-736, (2010) · Zbl 1186.68469
[46] Xu, Z. S.; Cai, X. Q., Recent advances in intuitionistic fuzzy information aggregation, Fuzzy Optim. Decis. Making, 9, 359-381, (2010) · Zbl 1205.68432
[47] Yager, R. R., OWA aggregation of intuitionistic fuzzy sets, Int. J. General Syst., 38, 6, 617-641, (2009) · Zbl 1187.68615
[48] Yager, R. R., Some aspects of intuitionistic fuzzy sets, Fuzzy Optim. Decis. Making, 8, 67-90, (2009) · Zbl 1179.03054
[49] Yang, X. P.; Yao, J. T., Modelling multi-agen three-way decisions with decision-theoretic rough sets, Fundam. Inform., 115, 2-3, 157-171, (2012) · Zbl 1248.68505
[50] Yao, J. T.; Herbert, J. P., Web-based support systems with rough set analysis, (Kryszkiewicz, M.; etal., RSEIP 2007, LNAI 4585, (2007), Springer Berlin), 360-370
[51] Yao, Y. Y.; Wong, S. K.M.; Lingras, P., A decision-theoretic rough set model, (Ras, Z. W.; Zemankova, M.; Emrich, M. L., Methodologies for Intelligent Systems, vol. 5, (1990), North-Holland New York), 17-24
[52] Yao, Y. Y.; Wong, S. K.M., A decision theoretic framework for approximating concepts, Int. J. Man-Machine Stud., 37, 793-809, (1992)
[53] Yao, Y. Y., Three-way decisions with probabilistic rough sets, Inform. Sci., 180, 341-353, (2010)
[54] Yao, Y. Y., The superiority of three-way decision in probabilistic rough set models, Inform. Sci., 181, 6, 1080-1096, (2011) · Zbl 1211.68442
[55] Y.Y. Yao, X.F. Deng, Sequential three-way decisions with probabilistic rough sets, in: Proc. 10th IEEE International Conference on Cognitive Informatics and Cognitive Computing, 2011, pp. 120-125.
[56] Y.Y. Yao, Three-way decisions using rough sets, in: G. Peters et al. (Eds.), Rough Sets: Selected Methods and Applications in Management and Engineering, Advanced Information and Knowledge Processing, 2012, pp. 79-93.
[57] Yao, Y. Y., An outline of a theory of three-way decisions, (Yao, J.; etal., RSCTC 2012, LNCS (LNAI) 7413, (2012), Springer-Verlag Berlin), 1-17 · Zbl 1404.68177
[58] Yao, Y. Y., Granular computing and sequential three-way decisions, (Lingras, P.; etal., RSKT 2013, LNAI 8171, (2013), Springer-Verlag Berlin), 16-27
[59] Yu, H.; Liu, Z. G.; Wang, G. Y., An automatic method to determine the number of clusters using decision-theoretic rough set, Int. J. Approx. Reason., 55, 142-155, (2014)
[60] Zadeh, L. A., Fuzzy sets, Inform. Control, 8, 338-353, (1965) · Zbl 0139.24606
[61] Zhang, X. Y.; Miao, D. Q., Reduction target structure-based hierarchical attribute reduction for two-category decision-theoretic rough sets, Inform. Sci., 277, 755-776, (2014) · Zbl 1354.68268
[62] Zhou, B., Multi-class decision-theoretic rough sets, Int. J. Approx. Reason., 55, 211-224, (2014) · Zbl 1316.68203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.