×

zbMATH — the first resource for mathematics

On the birationality of complete intersections associated to nef-partitions. (English) Zbl 1360.14040
In this paper, the author proves that if \(X\), \(\tilde{X}\) are toric multiple mirrors and \(D\) is a certain determinantal variety such that they are all irreducible with equal dimension then, \(X\) and \(\tilde{X}\) are birational. The author also includes some applications of his results to an example of J. R. Calabrese and R. P. Thomas [Math. Ann. 365, No. 1–2, 155–172 (2016; Zbl 1342.14036)].

MSC:
14E05 Rational and birational maps
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Batyrev, V. V., Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori, Duke Math. J., 69, 2, 349-409, (1993) · Zbl 0812.14035
[2] Batyrev, V. V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom., 3, 3, 493-535, (1994) · Zbl 0829.14023
[3] Batyrev, V. V.; Borisov, L. A., On Calabi-Yau complete intersections in toric varieties, (Higher-Dimensional Complex Varieties, Trento, (1994)), 39-65, Berlin · Zbl 0908.14015
[4] Batyrev, V. V.; Borisov, L. A., Mirror duality and string-theoretic Hodge numbers, Invent. Math., 126, 1, 183-203, (1996) · Zbl 0872.14035
[5] Batyrev, V. V.; Borisov, L. A., Dual cones and mirror symmetry for generalized Calabi-Yau manifolds, (Mirror Symmetry, II, AMS/IP Stud. Adv. Math., vol. 1, (1997), Amer. Math. Soc. Providence, RI), 71-86 · Zbl 0927.14019
[6] Batyrev, V.; Nill, B., Combinatorial aspects of mirror symmetry, (Integer Points in Polyhedra—Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics, Contemp. Math., vol. 452, (2008), Amer. Math. Soc. Providence, RI), 35-66 · Zbl 1161.14037
[7] Berglund, P.; Hübsch, T., A generalized construction of mirror manifolds, Nuclear Phys. B, 393, 1-2, 377-391, (1993) · Zbl 1245.14039
[8] Borisov, L., Towards the mirror symmetry for Calabi-Yau complete intersections in Gorenstein toric Fano varieties
[9] Borisov, L.; Li, Z., On Clifford double mirrors of toric complete intersections, (2016)
[10] Bridgeland, T., Flops and derived categories, Invent. Math., 147, 613-632, (2002) · Zbl 1085.14017
[11] Calabrese, J. R.; Thomas, R. P., Derived equivalent Calabi-Yau threefolds from cubic fourfolds, Math. Ann., 1-18, (2015)
[12] Clarke, P., A proof of the birationality of certain BHK-mirrors, Complex Manifolds, 1, 45-51, (2014) · Zbl 1320.32032
[13] Coates, T.; Kasprzyk, A.; Prince, T., Four-dimensional Fano toric complete intersections, Proc. R. Soc., Math. Phys. Sci., 471, (2015) · Zbl 1371.14047
[14] Cox, D.; Katz, S., Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs, vol. 68, (1999), American Mathematical Society Providence, RI · Zbl 0951.14026
[15] Cox, D.; Little, J.; Schenck, H., Toric varieties, (2011), American Mathematical Society · Zbl 1223.14001
[16] Favero, D.; Kelly, T. L., Proof of a conjecture of Batyrev and nill · Zbl 1390.14124
[17] Gross, M., Toric degenerations and Batyrev-borisov duality, Math. Ann., 333, 3, 645-688, (2005) · Zbl 1086.14035
[18] Gross, M.; Siebert, B., Mirror symmetry via logarithmic degeneration data. I, J. Differential Geom., 72, 2, 169-338, (2006) · Zbl 1107.14029
[19] Harder, A.; Doran, C. F., Toric degenerations and the Laurent polynomials related to Givental’s Landau-Ginzburg models · Zbl 1354.14076
[20] Hartshorne, R., Algebraic geometry, (1977), Springer-Verlag · Zbl 0367.14001
[21] Kelly, T. L., Berglund-Hübsch-krawitz mirrors via shioda maps, Adv. Theor. Math. Phys., 17, 6, 1425-1449, (2013) · Zbl 1316.14076
[22] Kollár, J., Rational curves on algebraic varieties, (1995), Springer-Verlag · Zbl 0877.14012
[23] Kollár, J.; Mori, S., Birational geometry of algebraic varieties, (1998), Cambridge University Press
[24] Kontsevich, M., Homological algebra of mirror symmetry, 2, (Zürich, 1994, (1995), Birkhäuser Basel), 120-139 · Zbl 0846.53021
[25] Krawitz, M., FJRW rings and Landau-Ginzburg mirror symmetry, (2010), University of Michigan, Ph.D. thesis · Zbl 1250.81087
[26] Kreuzer, M.; Riegler, E.; Sahakyan, D. A., Toric complete intersections and weighted projective space, J. Geom. Phys., 46, 2, 159-173, (2003) · Zbl 1061.14037
[27] Matsuki, K., Introduction to the Mori program, (2002), Springer-Verlag · Zbl 0988.14007
[28] T. Prince, Ph.D. thesis, Imperial College London, in preparation.
[29] Reid, M., Decomposition of toric morphisms, (Arithmetic and Geometry, Vol. II, Geometry Progress in Math., vol. 36, (1983), Birkhäuser Boston, Basel, Stuttgart), 395-418
[30] Shoemaker, M., Birationality of berglund-Hübsch-krawitz mirrors, Comm. Math. Phys., 331, 2, 417-429, (2014) · Zbl 1395.14034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.