×

zbMATH — the first resource for mathematics

Adaptive finite-time fault-tolerant tracking control for a class of MIMO nonlinear systems with output constraints. (English) Zbl 1359.93226
Summary: In this work, we present a novel adaptive finite-time fault-tolerant control algorithm for a class of multi-input multi-output nonlinear systems with constraint requirement on the system output tracking error. Both parametric and nonparametric system uncertainties can be effectively dealt with by the proposed control scheme. The gain functions of the nonlinear systems under discussion, especially the control input gain function, can be not fully known and state-dependent. Backstepping design with a \(tan\)-type barrier Lyapunov function and a new structure of stabilizing function is presented. We show that under the proposed control scheme, finite-time convergence of the output tracking error into a small set around zero is guaranteed, while the constraint requirement on the system output tracking error will not be violated during operation. An illustrative example on a robot manipulator model is presented in the end to further demonstrate the effectiveness of the proposed control scheme.

MSC:
93C40 Adaptive control/observation systems
93B35 Sensitivity (robustness)
93C10 Nonlinear systems in control theory
93C15 Control/observation systems governed by ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Huang, Adaptive finite-time consensus control of a group of uncertain nonlinear mechanical systems, Automatica 51 pp 292– (2015) · Zbl 1309.93011 · doi:10.1016/j.automatica.2014.10.093
[2] Lu, Adaptive attitude tracking control for rigid spacecraft with finite-time convergence, Automatica 49 (12) pp 3591– (2013) · Zbl 1315.93045 · doi:10.1016/j.automatica.2013.09.001
[3] Huo, Adaptive fuzzy finite-time fault-tolerant attitude control of rigid spacecraft, Journal of the Franklin Institute 352 (10) pp 4225– (2015) · Zbl 1395.93299 · doi:10.1016/j.jfranklin.2015.05.042
[4] Zhai, Adaptive finite-time control for nonlinear teleoperation systems with asymmetric time-varying delays, International Journal of Robust and Nonlinear Control (2015)
[5] Hong Y Wang HO Bushnell LG Adaptive finite-time control of nonlinear systems In Proceedings of the American Control Conference Arlington, Virginia 2001 4149 4154
[6] Hong, Adaptive finite-time control of nonlinear systems with parametric uncertainty, IEEE Transactions on Automatic Control 51 (5) pp 858– (2006) · Zbl 1366.93290 · doi:10.1109/TAC.2006.875006
[7] Cai, Adaptive neural finite-time control for a class of switched nonlinear systems, Neurocomputing 155 pp 177– (2015) · doi:10.1016/j.neucom.2014.12.033
[8] Adetola, Finite-time parameter estimation in adaptive control of nonlinear systems, IEEE Transactions on Automatic Control 53 (3) pp 807– (2008) · Zbl 1367.93295 · doi:10.1109/TAC.2008.919568
[9] Blanchini, Set invariance in control, Automatica 35 (11) pp 1747– (1999) · Zbl 0935.93005 · doi:10.1016/S0005-1098(99)00113-2
[10] Gilbert, Linear systems with state and control constraints: the theory and application of maximal output admissible sets, IEEE Transactions on Automatic Control 36 (9) pp 1008– (1991) · Zbl 0754.93030 · doi:10.1109/9.83532
[11] Mayne, Constrained model predictive control: stability and optimality, Automatica 36 (6) pp 789– (2000) · Zbl 0949.93003 · doi:10.1016/S0005-1098(99)00214-9
[12] Bemporad, Model predictive control based on linear programming the explicit solution, IEEE Transactions on Automatic Control 47 (12) pp 1974– (2002) · Zbl 1364.93697 · doi:10.1109/TAC.2002.805688
[13] Kogiso, Reference governor for constrained systems with time-varying references, Robotics and Autonomous Systems 57 (3) pp 289– (2009) · Zbl 05724937 · doi:10.1016/j.robot.2008.10.015
[14] Jin, Proceedings of the 11th IEEE International Conference on Control and Automation (IEEE ICCA) pp 1444– (2014) · doi:10.1109/ICCA.2014.6871135
[15] Niu, P-times differentiable unbounded functions for robust control of uncertain switched nonlinear systems with tracking constraints, International Journal of Robust and Nonlinear Control 25 (16) pp 2965– (2015) · Zbl 1327.93141 · doi:10.1002/rnc.3243
[16] Wang, Decentralized adaptive tracking control for a class of interconnected nonlinear time-varying systems, Automatica 54 pp 16– (2015) · Zbl 1318.93048 · doi:10.1016/j.automatica.2015.01.041
[17] Wang, Decentralized adaptive backstepping control for a class of interconnected nonlinear systems with unknown actuator failures, Journal of the Franklin Institute 352 (3) pp 835– (2015) · Zbl 1307.93210 · doi:10.1016/j.jfranklin.2014.11.019
[18] Tee, Barrier Lyapunov function for control of output-constrained nonlinear systems, Automatica 45 (4) pp 918– (2009) · Zbl 1162.93346 · doi:10.1016/j.automatica.2008.11.017
[19] Niu, Barrier Lyapunov functions for the output tracking control of constrained nonlinear switched systems, Systems & Control Letters 62 (10) pp 963– (2013) · Zbl 1281.93092 · doi:10.1016/j.sysconle.2013.07.003
[20] Li, Adaptive fuzzy output-feedback control for output-constrained nonlinear systems in the presence of input saturation, Fuzzy Sets and Systems 248 pp 138– (2014) · Zbl 1338.93211 · doi:10.1016/j.fss.2013.11.006
[21] Jin, Iterative learning control for output-constrained systems with both parametric and non-parametric uncertainties, Automatica 49 (8) pp 2508– (2013) · Zbl 1364.93242 · doi:10.1016/j.automatica.2013.04.039
[22] Xu, State-constrained iterative learning control for a class of MIMO systems, IEEE Transactions on Automatic Control 58 (5) pp 1322– (2013) · doi:10.1109/TAC.2012.2223353
[23] Jin, Adaptive fault-tolerant control for a class of output-constrained nonlinear systems, International Journal of Robust Nonlinear Control 25 (18) pp 3732– (2015) · Zbl 1336.93047 · doi:10.1002/rnc.3293
[24] Jin, Adaptive fault-tolerant control for a class of input and state-constrained MIMO nonlinear systems, International Journal of Robust and Nonlinear Control 26 (2) pp 286– (2016) · Zbl 1333.93141 · doi:10.1002/rnc.3312
[25] Wang, Adaptive compensation for infinite number of actuator failures or faults, Automatica 47 pp 2197– (2011) · Zbl 1228.93070 · doi:10.1016/j.automatica.2011.08.022
[26] Shen, Cooperative adaptive fuzzy tracking control for networked unknown nonlinear multiagent systems with time-varying actuator faults, IEEE Transactions on Fuzzy Systems 22 (3) pp 494– (2014) · doi:10.1109/TFUZZ.2013.2260757
[27] Zuo, Fault-tolerant control for singular systems with actuator saturation and nonlinear perturbation, Automatica 46 pp 569– (2010) · Zbl 1194.93093 · doi:10.1016/j.automatica.2010.01.024
[28] Li, Model-independent adaptive fault-tolerant output tracking control of 4WS4WD road vehicles, IEEE Transactions on Intelligent Transportation Systems 14 (1) pp 169– (2013) · doi:10.1109/TITS.2012.2211016
[29] Li, Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach, Automatica 50 pp 1825– (2014) · Zbl 1296.93200 · doi:10.1016/j.automatica.2014.04.006
[30] Zhu, Attitude stabilization of rigid spacecraft with finite-time convergence, International Journal of Robust and Nonlinear Control 21 (6) pp 686– (2011) · Zbl 1214.93100 · doi:10.1002/rnc.1624
[31] Yu, Continuous finite-time control for robotic manipulators with terminal sliding mode, Automatica 41 (11) pp 1957– (2005) · Zbl 1125.93423 · doi:10.1016/j.automatica.2005.07.001
[32] Tang, Proceedings 3rd IFAC International Conference on Intelligent Control and Automation Science pp 449– (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.