×

zbMATH — the first resource for mathematics

Optimized free energy-based lattice Boltzmann method for modeling micro drop dynamics. (English) Zbl 1359.76233

MSC:
76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
76T10 Liquid-gas two-phase flows, bubbly flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Aminfar and M. Mohammadpourfard, Proc. IMechE, Part C: J. Mech. Eng. Sci. 222, 1855 (2008), DOI: 10.1243/09544062JMES809. genRefLink(16, ’rf1’, ’10.1243%252F09544062JMES809’); genRefLink(128, ’rf1’, ’000259980400024’);
[2] H. Aminfar and M. Mohammadpourfard, Comput. Meth. Appl. Mech. Eng. 198, 3852 (2009), DOI: 10.1016/j.cma.2009.08.021. genRefLink(16, ’rf2’, ’10.1016%252Fj.cma.2009.08.021’); genRefLink(128, ’rf2’, ’000271379000015’);
[3] H. Aminfar and M. Mohammadpourfard, Int. J. Comput. Fluid Dynam. 24, 143 (2010), DOI: 10.1080/10618560903369169. genRefLink(16, ’rf3’, ’10.1080%252F10618560903369169’); genRefLink(128, ’rf3’, ’000284001900001’);
[4] P. L. Bhatnagar, E. P. Gross and M. Krook, Phys. Rev. 94, 511 (1954), DOI: 10.1103/PhysRev.94.511. genRefLink(16, ’rf4’, ’10.1103%252FPhysRev.94.511’); genRefLink(128, ’rf4’, ’A1954UB48000003’);
[5] A. J. Briant, A. J. Wagner and J. M. Yeomans, Phys. Rev. E 69, 031602 (2004), DOI: 10.1103/PhysRevE.69.031602. genRefLink(16, ’rf5’, ’10.1103%252FPhysRevE.69.031602’); genRefLink(128, ’rf5’, ’000220729100043’);
[6] J. C. Butcher , Numerical Methods for Ordinary Differential Equations , 2nd edn. ( John Wiley & Sons Ltd , England , 2008 ) . genRefLink(16, ’rf6’, ’10.1002%252F9780470753767’); · Zbl 1167.65041
[7] Q. Chang and J. I. D. Alexander, Microfluid Nanofluid 2, 309 (2006), DOI: 10.1007/s10404-005-0075-2. genRefLink(16, ’rf7’, ’10.1007%252Fs10404-005-0075-2’); genRefLink(128, ’rf7’, ’000240036600004’);
[8] A. Dupuis and J. M. Yeomans, Fut. Gen. Comp. Sys. 20, 993 (2004), DOI: 10.1016/j.future.2003.12.012. genRefLink(16, ’rf8’, ’10.1016%252Fj.future.2003.12.012’); genRefLink(128, ’rf8’, ’000223366600012’);
[9] A. Dupuis and J. M. Yeomans, Langmuir 21, 2624 (2005), DOI: 10.1021/la047348i. genRefLink(16, ’rf9’, ’10.1021%252Fla047348i’); genRefLink(128, ’rf9’, ’000227578700072’);
[10] D. J. Holdych, Int. J. Mod. Phys. C 9, 1393 (1998), DOI: 10.1142/S0129183198001266. [Abstract] genRefLink(128, ’rf10’, ’000080459500024’);
[11] J. Kiusalaas , Numerical Methods in Engineering with MATLAB , 2nd edn. ( Cambridge University Press , USA , 2010 ) . genRefLink(16, ’rf11’, ’10.1017%252FCBO9780511812224’); · Zbl 1188.65001
[12] H. Kusumaatmaja, Europhys. Lett. 73, 740 (2006), DOI: 10.1209/epl/i2005-10452-0. genRefLink(16, ’rf12’, ’10.1209%252Fepl%252Fi2005-10452-0’);
[13] H. Li and H. Fang, Eur. Phys. J. Special Topics 171, 129 (2009), DOI: 10.1140/epjst/e2009-01020-0. genRefLink(16, ’rf13’, ’10.1140%252Fepjst%252Fe2009-01020-0’); genRefLink(128, ’rf13’, ’000266044900017’);
[14] C. M. Pooley and K. Furtado, Phys. Rev. E 77, 046702 (2008), DOI: 10.1103/PhysRevE.77.046702. genRefLink(16, ’rf14’, ’10.1103%252FPhysRevE.77.046702’); genRefLink(128, ’rf14’, ’000255457000078’);
[15] M. R. Swift, Phys. Rev. E 54, 5041 (1996), DOI: 10.1103/PhysRevE.54.5041. genRefLink(16, ’rf15’, ’10.1103%252FPhysRevE.54.5041’); genRefLink(128, ’rf15’, ’A1996VU53700073’);
[16] M. R. Swift, W. R. Osborn and J. M. Yeomans, Phys. Rev. Lett. 75, 830 (1995), DOI: 10.1103/PhysRevLett.75.830. genRefLink(16, ’rf16’, ’10.1103%252FPhysRevLett.75.830’); genRefLink(128, ’rf16’, ’A1995RL70700015’);
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.