×

zbMATH — the first resource for mathematics

Time-accurate flow simulations using a finite-volume based lattice Boltzmann flow solver with dual time stepping scheme. (English) Zbl 1359.76229

MSC:
76M28 Particle methods and lattice-gas methods
76M12 Finite volume methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aidun, C. K. and Clausen, J. R. [2010] ” Lattice-Boltzmann method for complex flows,” Annu. Rev. Fluid Mech.42, 439-472. genRefLink(16, ’S0219876216500353BIB001’, ’10.1146%252Fannurev-fluid-121108-145519’); genRefLink(128, ’S0219876216500353BIB001’, ’000274107900019’);
[2] Anderson, W. K., Thomas, J. L. and VanLeer, B. [1986] ” Comparison of finite volume flux vector splittings for the Euler equations,” AIAA J.24, 1453-1460. genRefLink(16, ’S0219876216500353BIB002’, ’10.2514%252F3.9465’);
[3] Ascher, U. M., Ruuth, S. J. and Spiteri, R. J. [1997] ” Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations,” Appl. Numer. Math.25, 151-167. genRefLink(16, ’S0219876216500353BIB003’, ’10.1016%252FS0168-9274%252897%252900056-1’); genRefLink(128, ’S0219876216500353BIB003’, ’A1997YE31900003’);
[4] Bhatnagar, P. L., Gross, E. P. and Krook, M. [1954] ” A model for collision processes in gases,” Phys. Rev. Lett.94, 511-525. · Zbl 0055.23609
[5] Butcher, J. C. [2008] Numerical Methods for Ordinary Differential Equations (John Wiley & Sons, Chichester). genRefLink(16, ’S0219876216500353BIB005’, ’10.1002%252F9780470753767’); · Zbl 1167.65041
[6] Crouzeix, M. [1980] ” Une methode multipas implicite-explicite pour l’approximation des equations d’evolution paraboliques,” J. Numer. Math.35, 257-276 (in French). genRefLink(16, ’S0219876216500353BIB006’, ’10.1007%252FBF01396412’); genRefLink(128, ’S0219876216500353BIB006’, ’A1980KP54900002’);
[7] Filippova, O. and Hanel, D. [1998] ” Boundary-fitting and local grid refinement for lattice BGK models,” Int. J. Mod. Phys.9, 1271-1279. [Abstract] genRefLink(128, ’S0219876216500353BIB007’, ’000080459500012’);
[8] Frisch, U., Hasslacher, B. and Pomeau, Y. [1986] ” Lattice-gas automata for the Navier-Stokes equation,” Phys. Rev. Lett.56, 1505-1508. genRefLink(16, ’S0219876216500353BIB008’, ’10.1103%252FPhysRevLett.56.1505’); genRefLink(128, ’S0219876216500353BIB008’, ’A1986A719100021’);
[9] Gao, F., Ingram, D. M., Causon, D. M. and Mingham, C. M. [2006] ” The development of a cartesian cut cell method for incompressible viscous flows,” Int. J. Numer. Methods Fluids54, 1033-1053. genRefLink(16, ’S0219876216500353BIB009’, ’10.1002%252Ffld.1409’); genRefLink(128, ’S0219876216500353BIB009’, ’000248096400001’);
[10] Guo, Z., Zheng, C. and Shi, B. [2002] ” An extrapolation method for boundary conditions in lattice Boltzmann method,” Phys. Fluids.14, 2007-2010. genRefLink(16, ’S0219876216500353BIB010’, ’10.1063%252F1.1471914’); genRefLink(128, ’S0219876216500353BIB010’, ’000175502400022’);
[11] Guzel, G. and Koc, I. [2015] ” Simulation of turbulent flows using a finite-volume based lattice Boltzmann flow solver,” Commun. Comput. Phys.17, 213-232. genRefLink(16, ’S0219876216500353BIB011’, ’10.4208%252Fcicp.040314.010814a’); genRefLink(128, ’S0219876216500353BIB011’, ’000353692300008’); · Zbl 1373.76129
[12] He, X. Y., Luo, L. S. and Dembo, M. [1996] ” Some progress in Lattice-Boltzmann methods. Part 1. Nonuniform mesh grids,” J. Comput. Phys.129, 357-363. genRefLink(16, ’S0219876216500353BIB012’, ’10.1006%252Fjcph.1996.0255’); genRefLink(128, ’S0219876216500353BIB012’, ’A1996WC62500008’); · Zbl 0868.76068
[13] He, X. and Luo, L. S. [1997] ” Theory of the Lattice Boltzmann method: From the Boltzmann equation to the Lattice Boltzmann equation,” Phys. Rev. E56, 6811-6817. genRefLink(16, ’S0219876216500353BIB013’, ’10.1103%252FPhysRevE.56.6811’); genRefLink(128, ’S0219876216500353BIB013’, ’000071043500077’);
[14] Imamura, T., Suzuki, K., Nakamura, T. and Yoshida, M. [2005] ” Acceleration of steady-state Lattice Boltzmann simulations on non-uniform mesh using local time step method,” J. Comput. Phys.202, 645-663. genRefLink(16, ’S0219876216500353BIB014’, ’10.1016%252Fj.jcp.2004.08.001’); genRefLink(128, ’S0219876216500353BIB014’, ’000225741800010’); · Zbl 1076.82032
[15] Jameson, A. [1991] ”Time dependent calculations using multigrid with applications to unsteady flows past airfoils and wings,” AIAA Paper 91-1596, Honululu, HI, USA.
[16] Kanevsky, A., Carpenter, M. H., Gottlieb, D. and Hesthaven, J. S. [2007] ” Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes,” J. Comput. Phys.225, 1753-1781. genRefLink(16, ’S0219876216500353BIB016’, ’10.1016%252Fj.jcp.2007.02.021’); genRefLink(128, ’S0219876216500353BIB016’, ’000255304500029’); · Zbl 1123.65097
[17] Ko, S. and Mccroskey, W. J. [1997] ” Computation of unsteady separating flow over an oscillating airfoil,” AIAA J.35, 1235-1238. genRefLink(16, ’S0219876216500353BIB017’, ’10.2514%252F2.226’);
[18] McNamara, G. R. and Zanetti, G. [1988] ” Use of the Boltzmann equation to simulate lattice-gas automata,” Phys. Rev. Lett.61, 2332-2335. genRefLink(16, ’S0219876216500353BIB018’, ’10.1103%252FPhysRevLett.61.2332’); genRefLink(128, ’S0219876216500353BIB018’, ’A1988Q882500014’);
[19] Oberkampf, W. L. and Roy, C. J. [2010] Verification and Validation in Scientific Computing (Cambridge University Press, Cambridge, UK). genRefLink(16, ’S0219876216500353BIB019’, ’10.1017%252FCBO9780511760396’); · Zbl 1211.68499
[20] Pareschi, L. and Russo, G. [2000] ” Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations,” Recent Trends Numer. Anal.3, 269-289. · Zbl 1018.65093
[21] Pareschi, L. and Russo, G. [2005] ” Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation,” J. Sci. Comput.25, 129-155. genRefLink(128, ’S0219876216500353BIB021’, ’000233730300009’); · Zbl 1203.65111
[22] Peng, G., Xi, H., Duncan, C. and Chou, S. H. [1999] ” Finite volume scheme for the lattice Boltzmann method on unstructured meshes,” Phys. Rev. E59, 4675-4682. genRefLink(16, ’S0219876216500353BIB022’, ’10.1103%252FPhysRevE.59.4675’); genRefLink(128, ’S0219876216500353BIB022’, ’000079834600114’);
[23] Piziali, R. A. [1994] 2-D and 3-D oscillating wing aerodynamics for a range of angles of attack including stall,” Technical Report, NASA TM-4632.
[24] Rossi, N., Ubertini, S., Bella, G. and Succi, S. [2005] ” Unstructured Lattice Boltzmann method in three dimensions,” Int. J. Numer. Methods Fluids49, 619-633. genRefLink(16, ’S0219876216500353BIB024’, ’10.1002%252Ffld.1018’); genRefLink(128, ’S0219876216500353BIB024’, ’000232431800003’);
[25] Rumsey, C. L., Sanetrik, M. D., Biedron, R. T., Melson, N. D. and Parlette, E. B. [1996] ” Efficiency and accuracy of time-accurate turbulent Navier-Stokes computations,” Comput. Fluids25, 217-236. genRefLink(16, ’S0219876216500353BIB025’, ’10.1016%252F0045-7930%252895%252900043-7’); genRefLink(128, ’S0219876216500353BIB025’, ’A1996UA22100008’); · Zbl 0881.76067
[26] Spalart, P. R. and Allmaras, S. R. [1992] ”A one equation turbulence model for aerodynamic flows,” AIAA Paper 92-0439, Reno, NV, USA.
[27] Stiebler, M., Tölke, J. and Krafczyk, M. [2006] ” An upwind discretization scheme for the finite volume Lattice Boltzmann method,” Comput. Fluids35, 814-819. genRefLink(16, ’S0219876216500353BIB027’, ’10.1016%252Fj.compfluid.2005.09.002’); genRefLink(128, ’S0219876216500353BIB027’, ’000238503000004’); · Zbl 1177.76329
[28] Succi, S., Amati, G. and Benzi, R. [1995] ” Challenges in Lattice Boltzmann computing,” J. Stat. Phys.81, 5-16. genRefLink(16, ’S0219876216500353BIB028’, ’10.1007%252FBF02179964’); genRefLink(128, ’S0219876216500353BIB028’, ’A1995TD43200002’); · Zbl 1106.82376
[29] Tritton, D. J. [1959] ” Experiments on the flow past a circular cylinder at low Reynolds numbers,” J. Fluid Mech.6, 547-567. genRefLink(16, ’S0219876216500353BIB029’, ’10.1017%252FS0022112059000829’); genRefLink(128, ’S0219876216500353BIB029’, ’A1959WH05800006’); · Zbl 0092.19502
[30] VanLeer, B. [1979] ” Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s method,” J. Comput. Phys.32, 101-136. genRefLink(16, ’S0219876216500353BIB030’, ’10.1016%252F0021-9991%252879%252990145-1’); genRefLink(128, ’S0219876216500353BIB030’, ’A1979HE78400009’);
[31] Weller, H., Lock, S. J. and Wood, N. [2013] ” Runge-Kutta IMEX schemes for the horizontally explicit/vertically implicit (HEVI) solution of wave equations,” J. Comput. Phys.252, 365-381. genRefLink(16, ’S0219876216500353BIB031’, ’10.1016%252Fj.jcp.2013.06.025’); genRefLink(128, ’S0219876216500353BIB031’, ’000322633500019’); · Zbl 1349.86015
[32] Williamson, C. H. K. and Brown, G. L. [1998] ” A series in 1/Re to represent the Strouhal-Reynolds number relationship of the cylinder wake,” J. Fluids Struct.12, 1073-1085. genRefLink(16, ’S0219876216500353BIB032’, ’10.1006%252Fjfls.1998.0184’); genRefLink(128, ’S0219876216500353BIB032’, ’000078642800007’);
[33] Yu, D., Mei, R., Luo, L. S. and Shyy, W. [2003] ” Viscous flow computations with the method of Lattice Boltzmann equation,” Prog. Aeronaut. Sci.39, 329-367. genRefLink(16, ’S0219876216500353BIB033’, ’10.1016%252FS0376-0421%252803%252900003-4’); genRefLink(128, ’S0219876216500353BIB033’, ’000183730600001’);
[34] Zarghami, A., Maghrebi, M. J., Ghasemi, J. and Ubertini, S. [2012] ” Lattice Boltzmann finite volume formulation with improved stability,” Commun. Comput. Phys.12, 42-64. genRefLink(16, ’S0219876216500353BIB034’, ’10.4208%252Fcicp.151210.140711a’); genRefLink(128, ’S0219876216500353BIB034’, ’000303762600002’); · Zbl 1373.76280
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.