×

zbMATH — the first resource for mathematics

Numerical investigation of transition in a boundary layer subjected to favourable and adverse streamwise pressure gradients and elevated free stream turbulence. (English) Zbl 1359.76154
Summary: Laminar-to-turbulent transition of a boundary layer subjected to streamwise pressure gradients and elevated free stream turbulence is computed through direct numerical simulation. The streamwise pressure distribution and elevated free stream turbulence levels mimic the conditions present on the suction side of highly-cambered airfoils. Longitudinal streamwise streaks form in the laminar boundary layer through the selective inclusion of low-frequency disturbances from the free stream turbulence. The spanwise spacing normalized by local inner variables indicates stabilization of the streaks occurs by the favourable pressure gradient and prevents the development of secondary streak instability modes until downstream of the suction peak. Two distinct processes are found to trigger transition to turbulence in the adverse pressure gradient region of the flow. One involves the development of varicose secondary instability of individual low-speed streaks that results in their breakdown and the formation and growth of discrete turbulent spots. The other involves a rapid amplification of free stream disturbances in the inflectional boundary layer in the adverse pressure gradient region that results in a largely homogeneous breakdown to turbulence across the span. The effect of high-frequency free stream disturbances on the streak secondary instability and on the nonlinear processes within the growing turbulent spot are analysed through the inviscid transport of instantaneous vorticity. The results suggest that free stream turbulence contributes to the growth of the turbulent spot by generating large strain rates that activate vortex-stretching and tilting processes within the spot.

MSC:
76F65 Direct numerical and large eddy simulation of turbulence
76F06 Transition to turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112002002331 · Zbl 1163.76359 · doi:10.1017/S0022112002002331
[2] DOI: 10.1017/S0022112083000634 · doi:10.1017/S0022112083000634
[3] DOI: 10.1016/j.ijheatfluidflow.2009.12.012 · doi:10.1016/j.ijheatfluidflow.2009.12.012
[4] DOI: 10.1115/1.2910032 · doi:10.1115/1.2910032
[5] DOI: 10.1017/jfm.2013.677 · doi:10.1017/jfm.2013.677
[6] DOI: 10.1007/s00348-003-0644-7 · doi:10.1007/s00348-003-0644-7
[7] DOI: 10.1007/s11630-012-0518-5 · doi:10.1007/s11630-012-0518-5
[8] DOI: 10.1007/s003480050255 · doi:10.1007/s003480050255
[9] DOI: 10.1063/1.3005836 · Zbl 1182.76669 · doi:10.1063/1.3005836
[10] DOI: 10.1017/S0022112001007431 · doi:10.1017/S0022112001007431
[11] DOI: 10.2514/8.2010 · doi:10.2514/8.2010
[12] DOI: 10.1017/S002211209200048X · Zbl 0825.76312 · doi:10.1017/S002211209200048X
[13] DOI: 10.1017/S002211200700688X · Zbl 1118.76003 · doi:10.1017/S002211200700688X
[14] DOI: 10.1063/1.869962 · Zbl 1147.76382 · doi:10.1063/1.869962
[15] DOI: 10.1115/1.1906266 · doi:10.1115/1.1906266
[16] DOI: 10.1017/S0022112000002421 · Zbl 0983.76025 · doi:10.1017/S0022112000002421
[17] Roach, Numerical Simulation of Unsteady Flows and Transition to Turbulence (1990)
[18] DOI: 10.1063/1.869908 · Zbl 1147.76308 · doi:10.1063/1.869908
[19] DOI: 10.1017/CBO9780511616938 · Zbl 1055.76001 · doi:10.1017/CBO9780511616938
[20] DOI: 10.1016/0142-727X(87)90001-4 · doi:10.1016/0142-727X(87)90001-4
[21] DOI: 10.1017/S0022112000001580 · Zbl 0959.76503 · doi:10.1017/S0022112000001580
[22] DOI: 10.1006/jcph.1994.1112 · Zbl 0807.76051 · doi:10.1006/jcph.1994.1112
[23] DOI: 10.2514/3.9246 · doi:10.2514/3.9246
[24] DOI: 10.1017/jfm.2011.412 · Zbl 1241.76246 · doi:10.1017/jfm.2011.412
[25] DOI: 10.1063/1.868688 · doi:10.1063/1.868688
[26] DOI: 10.1063/1.3666844 · Zbl 06423295 · doi:10.1063/1.3666844
[27] DOI: 10.1017/CBO9780511840531 · Zbl 0966.76002 · doi:10.1017/CBO9780511840531
[28] Park, Phys. Fluids 24 (2012)
[29] DOI: 10.1017/jfm.2012.173 · Zbl 1248.76006 · doi:10.1017/jfm.2012.173
[30] Nishioka, Transition and Turbulence: Proceedings of the Symposium on Transition and Turbulence in Fluids pp 113– (1981) · doi:10.1016/B978-0-12-493240-1.50012-0
[31] Morkovin, On the Many Faces of Transition pp 1– (1969)
[32] DOI: 10.1016/0017-9310(65)90062-1 · doi:10.1016/0017-9310(65)90062-1
[33] DOI: 10.1115/1.2812949 · doi:10.1115/1.2812949
[34] DOI: 10.1115/1.2841731 · doi:10.1115/1.2841731
[35] DOI: 10.1017/S0022112000002810 · Zbl 0963.76509 · doi:10.1017/S0022112000002810
[36] DOI: 10.1017/S0022112008001201 · Zbl 1151.76497 · doi:10.1017/S0022112008001201
[37] DOI: 10.1063/1.2140287 · Zbl 1188.76080 · doi:10.1063/1.2140287
[38] DOI: 10.1063/1.858555 · Zbl 0800.76131 · doi:10.1063/1.858555
[39] DOI: 10.1017/S0022112006001340 · Zbl 1177.76136 · doi:10.1017/S0022112006001340
[40] DOI: 10.1016/j.fluiddyn.2004.02.003 · Zbl 1058.76510 · doi:10.1016/j.fluiddyn.2004.02.003
[41] DOI: 10.1017/S0022112062000014 · Zbl 0131.41901 · doi:10.1017/S0022112062000014
[42] DOI: 10.1017/S0022112005003800 · Zbl 1070.76024 · doi:10.1017/S0022112005003800
[43] Klebanoff, Bull. Am. Phys. Soc. 10 pp 1323– (1971)
[44] DOI: 10.1115/1.2717608 · doi:10.1115/1.2717608
[45] DOI: 10.1017/S0022112099006205 · Zbl 1002.76051 · doi:10.1017/S0022112099006205
[46] DOI: 10.1017/S0022112071002490 · doi:10.1017/S0022112071002490
[47] DOI: 10.1017/S0022112010004027 · Zbl 1221.76102 · doi:10.1017/S0022112010004027
[48] DOI: 10.1017/S0022112072002903 · doi:10.1017/S0022112072002903
[49] Volino, ASME Paper GT-0192 (2001)
[50] DOI: 10.1017/S0022112095000462 · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[51] DOI: 10.1088/1468-5248/3/1/018 · doi:10.1088/1468-5248/3/1/018
[52] DOI: 10.1017/S0022112000002469 · Zbl 0983.76027 · doi:10.1017/S0022112000002469
[53] DOI: 10.1017/S0022112087002337 · doi:10.1017/S0022112087002337
[54] DOI: 10.1063/1.869716 · Zbl 1185.76578 · doi:10.1063/1.869716
[55] DOI: 10.1017/S0022112008000803 · Zbl 1175.76025 · doi:10.1017/S0022112008000803
[56] DOI: 10.1016/S0169-5983(99)00009-X · doi:10.1016/S0169-5983(99)00009-X
[57] DOI: 10.1017/S0022112088000345 · Zbl 0641.76050 · doi:10.1017/S0022112088000345
[58] DOI: 10.1063/1.2838594 · Zbl 1182.76082 · doi:10.1063/1.2838594
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.