×

zbMATH — the first resource for mathematics

Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers. (English) Zbl 1359.76146
J. Fluid Mech. 795, 210-240 (2016); erratum ibid. 797, 917 (2016).

MSC:
76F40 Turbulent boundary layers
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abe, H.; Kawamura, H.; Choi, H., Very large-scale structures and their effects on the wall shear-stress fluctuations in a turbulent channel flow up to Re_{𝜏} = 640, Trans. ASME J. Fluids Engng, 126, 5, 835-843, (2004)
[2] Acharya, M.; Bornstein, J.; Escudier, M. P., Turbulent boundary layers on rough surfaces, Exp. Fluids, 4, 1, 33-47, (1986)
[3] Afzal, N., Fully developed turbulent flow in a pipe: an intermediate layer, Ing.-Arch., 52, 6, 355-377, (1982) · Zbl 0509.76060
[4] Akinlade, O. G.; Bergstrom, D. J.; Tachie, M. F.; Castillo, L., Outer flow scaling of smooth and rough wall turbulent boundary layers, Exp. Fluids, 37, 604-612, (2004)
[5] Allen, J. J.; Shockling, M. A.; Kunkel, G. J.; Smits, A. J., Turbulent flow in smooth and rough pipes, Phil. Trans. R. Soc. Lond. A, 365, 1852, 699-714, (2007) · Zbl 1152.76403
[6] Baars, W. J., Squire, D. T., Talluru, K. M., Abbassi, M. R., Hutchins, N. & Marusic, I.2016 Wall-drag measurements of smooth- and rough-wall turbulent boundary layers using a floating element. Exp. Fluids (under review).
[7] Bergstrom, D. J.; Akinlade, O. G.; Tachie, M. F., Skin friction correlation for smooth and rough wall turbulent boundary layers, Trans. ASME J. Fluids Engng, 127, 6, 1146-1153, (2005)
[8] Bhaganagar, K.; Kim, J.; Coleman, G., Effect of roughness on wall-bounded turbulence, Flow Turbul. Combust., 72, 2-4, 463-492, (2004) · Zbl 1081.76555
[9] Brzek, B.; Cal, R. B.; Johansson, G.; Castillo, L., Inner and outer scalings in rough surface zero pressure gradient turbulent boundary layers, Phys. Fluids, 19, 6, (2007) · Zbl 1182.76097
[10] Castro, I. P., Rough-wall boundary layers: mean flow universality, J. Fluid Mech., 585, 469-485, (2007) · Zbl 1178.76011
[11] Castro, I. P.; Segalini, A.; Alfredsson, P. H., Outer-layer turbulence intensities in smooth- and rough-wall boundary layers, J. Fluid Mech., 727, 119-131, (2013) · Zbl 1291.76170
[12] Chan, L.; Macdonald, M.; Chung, D.; Hutchins, N.; Ooi, A., A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime, J. Fluid Mech., 771, 743-777, (2015)
[13] Chauhan, K. A.; Monkewitz, P. A.; Nagib, H. M., Criteria for assessing experiments in zero pressure gradient boundary layers, Fluid Dyn. Res., 41, 2, (2009) · Zbl 1286.76007
[14] Chin, C.; Philip, J.; Klewicki, J. C.; Ooi, A.; Marusic, I., Reynolds-number-dependent turbulent inertia and onset of log region in pipe flows, J. Fluid Mech., 757, 747-769, (2014)
[15] Clauser, F. H., The turbulent boundary layer, Adv. Appl. Mech., 4, 1-51, (1956)
[16] Coles, D. E.1962 A manual of experimental boundary-layer practice for low-speed flow. RAND Corp. Rep. R-403-PR. The Rand Corp, Santa Monica, CA, USA.
[17] De Graaff, D. B.; Eaton, J. K., Reynolds-number scaling of the flat-plate turbulent boundary layer, J. Fluid Mech., 422, 319-346, (2000) · Zbl 0958.76509
[18] Efros, V.; Krogstad, P.-Å., Development of a turbulent boundary layer after a step from smooth to rough surface, Exp. Fluids, 51, 6, 1563-1575, (2011)
[19] Erm, L. P.; Joubert, P. N., Low-Reynolds-number turbulent boundary layers, J. Fluid Mech., 230, 1-44, (1991)
[20] Flack, K. A.; Schultz, M. P.; Connelly, J. S., Examination of a critical roughness height for outer layer similarity, Phys. Fluids, 19, 9, (2007) · Zbl 1182.76248
[21] Flack, K. A.; Schultz, M. P.; Shapiro, T. A., Experimental support for Townsend‘s Reynolds number similarity hypothesis on rough walls, Phys. Fluids, 17, 3, (2005) · Zbl 1187.76157
[22] Flores, O.; Jimenez, J., Effect of wall-boundary disturbances on turbulent channel flows, J. Fluid Mech., 566, 357-376, (2006) · Zbl 1275.76146
[23] Foss, J.; Haw, R., Transverse vorticity measurements using a compact array of four sensors, T. Heuris. Therm. Anemom., 97, 71-76, (1990)
[24] Grass, A. J., Structural features of turbulent flow over smooth and rough boundaries, J. Fluid Mech., 50, 2, 233-255, (1971)
[25] Harun, Z.; Monty, J. P.; Mathis, R.; Marusic, I., Pressure gradient effects on the large-scale structure of turbulent boundary layers, J. Fluid Mech., 715, 477-498, (2013) · Zbl 1284.76203
[26] Hong, J.; Katz, J.; Schultz, M. P., Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow, J. Fluid Mech., 667, 1-37, (2011) · Zbl 1225.76017
[27] Hultmark, M.; Vallikivi, M.; Bailey, S. C. C.; Smits, A. J., Logarithmic scaling of turbulence in smooth- and rough-wall pipe flow, J. Fluid Mech., 728, 376-395, (2013) · Zbl 1291.76166
[28] Hutchins, N.; Marusic, I., Evidence of very long meandering features in the logarithmic region of turbulent boundary layers, J. Fluid Mech., 579, 1-28, (2007) · Zbl 1113.76004
[29] Hutchins, N.; Marusic, I., Large-scale influences in near-wall turbulence, Phil. Trans. R. Soc. Lond. A, 365, 1852, 647-664, (2007) · Zbl 1152.76421
[30] Hutchins, N.; Nickels, T. B.; Marusic, I.; Chong, M. S., Hot-wire spatial resolution issues in wall-bounded turbulence, J. Fluid Mech., 635, 103, (2009) · Zbl 1183.76025
[31] Jackson, P. S., On the displacement height in the logarithmic velocity profile, J. Fluid Mech., 111, 15-25, (1981) · Zbl 0482.76053
[32] Jiménez, J., Turbulent flows over rough walls, Annu. Rev. Fluid Mech., 36, 173-196, (2004) · Zbl 1125.76348
[33] Keirsbulck, L.; Labraga, L.; Mazouz, A.; Tournier, C., Surface roughness effects on turbulent boundary layer structures, Trans. ASME J. Fluids Engng, 124, 1, 127-135, (2002)
[34] Klewicki, J. C.; Fife, P.; Wei, T., On the logarithmic mean profile, J. Fluid Mech., 638, 73-93, (2009) · Zbl 1183.76766
[35] Krogstad, P.-Å.; Antonia, R. A.; Browne, L. W. B., Comparison between rough- and smooth-wall turbulent boundary layers, J. Fluid Mech., 245, 599-617, (1992)
[36] Krogstad, P.-Å.; Efros, V., Rough wall skin friction measurements using a high resolution surface balance, Intl J. Heat Fluid Flow, 31, 3, 429-433, (2010)
[37] Krogstad, P.-Å.; Efros, V., About turbulence statistics in the outer part of a boundary layer developing over two-dimensional surface roughness, Phys. Fluids, 24, 7, (2012)
[38] Krogstadt, P.-Å.; Antonia, R. A., Surface roughness effects in turbulent boundary layers, Exp. Fluids, 27, 5, 450-460, (1999)
[39] Lee, S.-H.; Sung, H. J., Direct numerical simulation of the turbulent boundary layer over a rod-roughened wall, J. Fluid Mech., 584, 125-146, (2007) · Zbl 1175.76078
[40] Leonardi, S.; Orlandi, P.; Smalley, R. J.; Djenidi, L.; Antonia, R. A., Direct numerical simulations of turbulent channel flow with transverse square bars on one wall, J. Fluid Mech., 491, 229-238, (2003) · Zbl 1063.76576
[41] Ligrani, P. M.; Moffat, R. J., Structure of transitionally rough and fully rough turbulent boundary layers, J. Fluid Mech., 162, 69-98, (1986)
[42] Marusic, I.; Chauhan, K. A.; Kulandaivelu, V.; Hutchins, N., Evolution of zero-pressure-gradient boundary layers from different tripping conditions, J. Fluid Mech., 783, 379-411, (2015) · Zbl 1382.76125
[43] Marusic, I.; Monty, J. P.; Hultmark, M.; Smits, A. J., On the logarithmic region in wall turbulence, J. Fluid Mech., 716, R3, (2013) · Zbl 1284.76206
[44] Mehdi, F.; Klewicki, J. C.; White, C. M., Mean force structure and its scaling in rough-wall turbulent boundary layers, J. Fluid Mech., 731, 682-712, (2013) · Zbl 1294.76180
[45] Monty, J. P.; Allen, J. J.; Lien, K.; Chong, M. S., Modification of the large-scale features of high Reynolds number wall turbulence by passive surface obtrusions, Exp. Fluids, 51, 6, 1755-1763, (2011)
[46] Morrill-Winter, C.; Klewicki, J. C.; Baidya, R.; Marusic, I., Temporally optimized spanwise vorticity sensor measurements in turbulent boundary layers, Exp. Fluids, 56, (2015)
[47] Mulhearn, P. J.; Finnigan, J. J., Turbulent flow over a very rough, random surface, Boundary-Layer Meteorol., 15, 1, 109-132, (1978)
[48] Nickels, T. B.; Marusic, I.; Hafez, S.; Chong, M. S., Evidence of the k-1 law in a high-Reynolds-number turbulent boundary layer, Phys. Rev. Lett., 95, 7, (2005)
[49] Nickels, T. B.; Marusic, I.; Hafez, S.; Hutchins, N.; Chong, M. S., Some predictions of the attached eddy model for a high Reynolds number boundary layer, Phil. Trans. R. Soc. Lond. A, 365, 1852, 807-822, (2007) · Zbl 1152.76414
[50] Nikuradse, J.1933 Laws of flow in rough pipes. NASA Tech. Memo. 1292. · JFM 59.1462.02
[51] Perry, A. E.; Joubert, P. N., Rough-wall boundary layers in adverse pressure gradients, J. Fluid Mech., 17, 2, 193-211, (1963) · Zbl 0134.22001
[52] Perry, A. E.; Li, J. D., Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers, J. Fluid Mech., 218, 405-438, (1990)
[53] Perry, A. E.; Marusic, I.; Jones, M. B., On the streamwise evolution of turbulent boundary layers in arbitrary pressure gradients, J. Fluid Mech., 461, 61-91, (2002) · Zbl 1049.76032
[54] Perry, A. E.; Schofield, W. H.; Joubert, P. N., Rough wall turbulent boundary layers, J. Fluid Mech., 37, 2, 383-413, (1969)
[55] Raupach, M. R., Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers, J. Fluid Mech., 108, 363-382, (1981) · Zbl 0466.76049
[56] Raupach, M. R.; Antonia, R. A.; Rajagopalan, S., Rough-wall turbulent boundary layers, Appl. Mech. Rev., 44, 1, 1-25, (1991)
[57] Raupach, M. R.; Thom, A. S.; Edwards, I., A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces, Boundary-Layer Meteorol., 18, 4, 373-397, (1980)
[58] Schlatter, P.; Örlü, R., Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects, J. Fluid Mech., 710, 5-34, (2012) · Zbl 1275.76144
[59] Schultz, M. P.; Flack, K. A., Turbulent boundary layers over surfaces smoothed by sanding, Trans. ASME J. Fluids Engng, 125, 5, 863-870, (2003)
[60] Schultz, M. P.; Flack, K. A., The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime, J. Fluid Mech., 580, 381-405, (2007) · Zbl 1113.76009
[61] Shockling, M. A.; Allen, J. J.; Smits, A. J., Roughness effects in turbulent pipe flow, J. Fluid Mech., 564, 267-285, (2006) · Zbl 1178.76049
[62] Sillero, J. A.; Jiménez, J.; Moser, R. D., One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to 𝛿+ ≈ 2000, Phys. Fluids, 25, 10, (2013)
[63] Smits, A. J.; Monty, J.; Hultmark, M.; Bailey, S. C. C.; Hutchins, N.; Marusic, I., Spatial resolution correction for wall-bounded turbulence measurements, J. Fluid Mech., 676, 41-53, (2011) · Zbl 1241.76288
[64] Sreenivasan, K. R. & Sahay, A.1997 The persistence of viscous effects in the overlap region, and the mean velocity in turbulent pipe and channel flows. arXiv Physics (9708016).
[65] Tachie, M. F.; Bergstrom, D. J.; Balachandar, R., Rough wall turbulent boundary layers in shallow open channel flow, Trans. ASME J. Fluids Engng, 122, 3, 533-541, (2000)
[66] Talluru, K. M.; Kulandaivelu, V.; Hutchins, N.; Marusic, I., A calibration technique to correct sensor drift issues in hot-wire anemometry, Meas. Sci. Technol., 25, 10, (2014)
[67] Thom, A. S., Momentum absorption by vegetation, Q. J. R. Meteorol. Soc., 97, 414, 414-428, (1971)
[68] Toh, S.; Itano, T., Interaction between a large-scale structure and near-wall structures in channel flow, J. Fluid Mech., 524, 1, 249-262, (2005) · Zbl 1065.76553
[69] Townsend, A. A., The Structure of Turbulent Shear Flow, vol. 1, (1956), Cambridge University Press · Zbl 0070.43002
[70] Townsend, A. A., The Structure of Turbulent Shear Flow, vol. 2, (1976), Cambridge University Press · Zbl 0325.76063
[71] Volino, R. J.; Schultz, M. P.; Flack, K. A., Turbulence structure in rough- and smooth-wall boundary layers, J. Fluid Mech., 592, 263-293, (2007) · Zbl 1151.76359
[72] Walker, J. M., The application of wall similarity techniques to determine wall shear velocity in smooth and rough wall turbulent boundary layers, Trans. ASME J. Fluids Engng, 136, 5, (2014)
[73] Wei, T.; Fife, P.; Klewicki, J. C.; Mcmurtry, P., Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows, J. Fluid Mech., 522, 303-327, (2005) · Zbl 1065.76106
[74] Wu, Y.; Christensen, K. T., Outer-layer similarity in the presence of a practical rough-wall topography, Phys. Fluids, 19, 8, (2007) · Zbl 1182.76832
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.