×

A partitioned implicit coupling strategy for incompressible flow past an oscillating cylinder. (English) Zbl 1359.76080

Summary: A partitioned implicit coupling strategy is proposed for fluid-structure interaction (FSI) problems in this paper. The incompressible Navier-Stokes equations under arbitrary Lagrangian-Eulerian description are solved by the characteristic-based split scheme while the structural equation is evaluated by the composite implicit time integration method. Moving submesh approach is performed for the mesh deformation and a mass source term (MST) is introduced into the pressure Poisson equation for respecting geometric conservation law. Fluid-structure coupling is achieved by the combined interface boundary condition (CIBC) method. The iterative loops are realized by fixed-point iterations with Aitken’s \(\Delta^{2}\) method. A structural force predictor is employed within the present algorithm, ensuring that the latest quantities belonging to different subdomains are adopted for the CIBC method. The proposed methodology is validated by flow-induced oscillations of a bluff body. The obtained results agree with the well-documented data. Some well-known flow phenomena have been detected successfully.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74H45 Vibrations in dynamical problems in solid mechanics
76D17 Viscous vortex flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. M. Abdullah, J. Comput. Civil Eng. ASCE 19(1), 104 (2005). genRefLink(16, ’rf1’, ’10.1061
[2] H. T. Ahn and Y. Kallinderis, J. Comput. Phys. 219(2), 671 (2006). genRefLink(16, ’rf2’, ’10.1016
[3] P. Anagnostopoulos, J. Fluids Struct. 8(4), 367 (1994). genRefLink(16, ’rf3’, ’10.1006
[4] P. Anagnostopoulos and P. W. Bearman, J. Fluids Struct. 6(1), 39 (1992). genRefLink(16, ’rf4’, ’10.1016
[5] S. Badia and R. Codina, Int. J. Numer. Meth. Eng. 72(1), 46 (2007). genRefLink(16, ’rf5’, ’10.1002
[6] H. Baek and G. E. Karniadakis, J. Comput. Phys. 231(2), 629 (2012). genRefLink(16, ’rf6’, ’10.1016
[7] M. H. Bahmani and M. H. Akbari, Ocean Eng. 37(6), 511 (2010). genRefLink(16, ’rf7’, ’10.1016
[8] Y. Bai, D. Sun and J. Lin, Comput. Fluids 39(9), 1549 (2010). genRefLink(16, ’rf8’, ’10.1016
[9] Y. Bai, Int. J. Comput. Fluid Dyn. 26(2), 119 (2012). genRefLink(16, ’rf9’, ’10.1080
[10] A. Barrero-Gil, A. Sanz-Andres and M. Roura, J. Fluids Struct. 25(7), 1236 (2009). genRefLink(16, ’rf10’, ’10.1016
[11] K. J. Bathe, Comput. Struct. 85(8), 437 (2007). genRefLink(16, ’rf11’, ’10.1016
[12] W. Dettmer and D. Perić, Comput. Methods Appl. Mech. Eng. 195(16), 1633 (2006). genRefLink(16, ’rf12’, ’10.1016
[13] W. G. Dettmer and D. Perić, Int. J. Numer. Meth. Eng. 93(1), 1 (2013). genRefLink(16, ’rf13’, ’10.1002
[14] R. Govardhan and C. H. K. Williamson , J. Fluid Mech. 420 , 85 ( 2000 ) . genRefLink(16, ’rf14’, ’10.1017
[15] T. He , D. Zhou and Y. Bao , Comput. Methods Appl. Mech. Eng. 224 , 81 ( 2012 ) . genRefLink(16, ’rf15’, ’10.1016
[16] He, T., Zhou, D. and Han, Z. [2014a] ”A CBS-based partitioned semi-implicit coupling scheme for 2D fluid-structure interaction using MCIBC method,” (Submitted) .
[17] T. He , Int. J. Comput. Fluid Dyn. ( 2014 ) , DOI: 10.1080/10618562.10612014.10927057.
[18] B. Hübner , E. Walhorn and D. Dinkler , Comput. Methods Appl. Mech. Eng. 193 , 2087 ( 2004 ) . genRefLink(16, ’rf18’, ’10.1016
[19] Y. J. Jan and T. W. H. Sheu, Comput. Mech. 33(2), 81 (2004). genRefLink(16, ’rf19’, ’10.1007
[20] A. Joly , S. Etienne and D. Pelletier , J. Fluids Struct. 28 , 232 ( 2012 ) . genRefLink(16, ’rf20’, ’10.1016
[21] U. Küttler and W. Wall, Comput. Mech. 43(1), 61 (2008). genRefLink(16, ’rf21’, ’10.1007
[22] E. Lefrançois, Int. J. Numer. Meth. Eng. 75(9), 1085 (2008). genRefLink(16, ’rf22’, ’10.1002
[23] L. Li, S. J. Sherwin and P. W. Bearman, Int. J. Numer. Meth. Fluids 38(2), 187 (2002). genRefLink(16, ’rf23’, ’10.1002
[24] C. Liang and A. S. DeJong , Massively parallel spectral difference solver for simulating vortex-induced vibrations of circular cylinders , Proc. ASME 2012 Int. Mechanical Engineering Congress and Exposition ( 2012 ) .
[25] G. A. Markou, Comput. Methods Appl. Mech. Eng. 196(6), 747 (2007). genRefLink(16, ’rf25’, ’10.1016
[26] N. Mitsume, Int. J. Comput. Methods 11(4), 1350101 (2014). [Abstract] genRefLink(128, ’rf26’, ’000341011800015’);
[27] S. Nagaoka, Comput. Mech. 48(3), 269 (2011). genRefLink(16, ’rf27’, ’10.1007
[28] T. Nguyen-Thoi, Int. J. Comput. Methods 10(1), 1340003 (2013). [Abstract] genRefLink(128, ’rf28’, ’000316954100003’);
[29] T. Nomura, Comput. Methods Appl. Mech. Engrg. 112(4), 291 (1994). genRefLink(16, ’rf29’, ’10.1016
[30] T. Nomura and T. J. R. Hughes, Comput. Methods Appl. Mech. Eng. 95(1), 115 (1992). genRefLink(16, ’rf30’, ’10.1016
[31] G. V. Parkinson and J. D. Smith, Quart. J. Mech. Appl. Math. 17(2), 225 (1964). genRefLink(16, ’rf31’, ’10.1093
[32] S. Piperno, Int. J. Numer. Meth. Fluids 25(10), 1207 (1997). genRefLink(16, ’rf32’, ’10.1002
[33] T. K. Prasanth and S. Mittal , J. Fluid Mech. 594 , 463 ( 2008 ) . genRefLink(16, ’rf33’, ’10.1017
[34] I. Robertson, J. Fluids Struct. 17(5), 681 (2003). genRefLink(16, ’rf34’, ’10.1016
[35] Roshko, A. [1954] On the development of turbulent wakes from vortex streets. Technical Report, National Advisory Committee for Aeronautics .
[36] R. Rossi and E. Oñate, Eng. Comput. 27(1), 20 (2010). genRefLink(16, ’rf36’, ’10.1108
[37] T. Sarpkaya, J. Fluids Struct. 19(4), 389 (2004). genRefLink(16, ’rf37’, ’10.1016
[38] K. W. Schulz and Y. Kallinderis, J. Comput. Phys. 143(2), 569 (1998). genRefLink(16, ’rf38’, ’10.1006
[39] S. Sen and S. Mittal, J. Fluids Struct. 27(6), 875 (2011). genRefLink(16, ’rf39’, ’10.1016
[40] S. Sen, S. Mittal and G. Biswas, Int. J. Numer. Meth. Fluids 67(9), 1160 (2011). genRefLink(16, ’rf40’, ’10.1002
[41] Y. Q. Shen, G. C. Zha and X. Y. Chen, J. Comput. Phys. 228(22), 8283 (2009). genRefLink(16, ’rf41’, ’10.1016
[42] D. Sun, J. S. Owen and N. G. Wright, J. Wind Eng. Ind. Aerodyn. 97(2), 77 (2009). genRefLink(16, ’rf42’, ’10.1016
[43] D. Sun, J. Wind Eng. Ind. Aerodyn. 96(7), 840 (2008). genRefLink(16, ’rf43’, ’10.1016
[44] V. B. C. Tan and T. Belytschko, Int. J. Comput. Methods 1(2), 387 (2004). [Abstract] genRefLink(128, ’rf44’, ’000207552300009’);
[45] S. Wang , Comput. Fluids 71 , 327 ( 2013 ) . genRefLink(16, ’rf45’, ’10.1016
[46] R. Wei, A. Sekine and M. Shimura, Int. J. Numer. Meth. Fluids 21(10), 993 (1995). genRefLink(16, ’rf46’, ’10.1002
[47] C. H. K. Williamson and A. Roshko, J. Fluids Struct. 2(4), 355 (1988). genRefLink(16, ’rf47’, ’10.1016
[48] F. L. Yang, C. H. Chen and D. L. Young, J. Comput. Phys. 230(9), 3276 (2011). genRefLink(16, ’rf48’, ’10.1016
[49] J. Yang, S. Preidikman and E. Balaras, J. Fluids Struct. 24(2), 167 (2008). genRefLink(16, ’rf49’, ’10.1016
[50] D. L. Young, J. T. Chang and T. I. Eldho, Int. J. Numer. Meth. Eng. 51(9), 1053 (2001). genRefLink(16, ’rf50’, ’10.1002
[51] Z. Zhang, J. Yao and G. Liu, Int. J. Comput. Methods 8(4), 747 (2011). [Abstract] genRefLink(128, ’rf51’, ’000296781200008’);
[52] O. C. Zienkiewicz, Int. J. Numer. Meth. Fluids 31(1), 359 (1999). genRefLink(16, ’rf52’, ’10.1002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.