×

zbMATH — the first resource for mathematics

Nonlinear flexural analysis of laminated composite panel under hygro-thermo-mechanical loading – a micromechanical approach. (English) Zbl 1359.74339
MSC:
74M25 Micromechanics of solids
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baltacioglu, A. K., Civalek, O., Akgoz, B. and Demir, F. [2011] ” Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution,” Int. J. Pressure Vessels Piping88, 290-300. genRefLink(16, ’S0219876216500158BIB001’, ’10.1016%252Fj.ijpvp.2011.06.004’); genRefLink(128, ’S0219876216500158BIB001’, ’000294586800003’);
[2] Belabed, Z., Houari, M. S. A., Tounsi, A., Mahmoud, S. R. and Beg, O. A. [2014] ” An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates,” Compos. Part B: Eng.60, 274-283. genRefLink(16, ’S0219876216500158BIB002’, ’10.1016%252Fj.compositesb.2013.12.057’); genRefLink(128, ’S0219876216500158BIB002’, ’000333506500032’);
[3] Bouchafa, A., Bouiadjra, M. B., Houari, M. S. A. and Tounsi, A. [2015] ” Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory,” Steel Compos. Struct.18(6), 1493-1515. genRefLink(16, ’S0219876216500158BIB003’, ’10.12989%252Fscs.2015.18.6.1493’); genRefLink(128, ’S0219876216500158BIB003’, ’000356242700010’);
[4] Bouderba, B., Houari, M. S. A. and Tounsi, A. [2013] ” Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations,” Steel Compos. Struct.14(1), 85-104. genRefLink(16, ’S0219876216500158BIB004’, ’10.12989%252Fscs.2013.14.1.085’); genRefLink(128, ’S0219876216500158BIB004’, ’000324863300006’);
[5] Bourada, M., Kaci, A., Houari, M. S. A. and Tounsi, A. [2015] ” A new simple shear and normal deformations theory for functionally graded beams,” Steel Compos. Struct.18(2), 409-423. genRefLink(16, ’S0219876216500158BIB005’, ’10.12989%252Fscs.2015.18.2.409’); genRefLink(128, ’S0219876216500158BIB005’, ’000352361900008’);
[6] Bousahla, A. A., Houari, M. S. A., Tounsi, A. and Bedia, E. A. A. [2014] ” A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates,” Int. J. Comput. Methods11(6), 1350082. [Abstract] genRefLink(128, ’S0219876216500158BIB006’, ’000345855100003’); · Zbl 1359.74084
[7] Chamis, C. C. [1987] ” Simplified composite micromechanics equations for mechanical, thermal and moisture related properties, engineers guide to composite materials,” in Engineers Guide to Composite Materials (ASM International, Materials Park, OH).
[8] Chamis, C. C. and Sinclair, J. H. [1982] ” Durability/life of fibre composites in hygro-thermo-mechanical environments,” in Proc. of Compos. Materials: Testing and Design (6th Conf.), Vol. 787, pp. 498-512.
[9] Chattibi, F., Benrahou, K. H., Benachour, A., Nedri, K. and Tounsi, A. [2015] ” Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory,” Steel Compos. Struct.19(1), 93-110. genRefLink(16, ’S0219876216500158BIB009’, ’10.12989%252Fscs.2015.19.1.093’); genRefLink(128, ’S0219876216500158BIB009’, ’000360304700006’);
[10] Cook, R. D., Malkus, D. S., Plesha, M. E. and Witt, R. J. [2009] Concepts and Applications of Finite Element Analysis, 4th Edition (John Wiley & Sons, Singapore).
[11] Dai, K. Y., Liu, G. R., Han, X. and Lim, K. M. [2005] ” Thermomechanical analysis of functionally graded material (FGM) plates using element-free Galerkin method,” Comput. Struct.83(17-18), 1487-1502. genRefLink(16, ’S0219876216500158BIB011’, ’10.1016%252Fj.compstruc.2004.09.020’); genRefLink(128, ’S0219876216500158BIB011’, ’000230160600010’);
[12] Dai, K. Y., Liu, G. R., Lim, K. M., Han, X. and Du, S. Y. [2004] ” A meshfree radial point interpolation method for analysis of functionally graded material (FGM) plates,” Comput. Mech.34(3), 213-223. genRefLink(16, ’S0219876216500158BIB012’, ’10.1007%252Fs00466-004-0566-0’); genRefLink(128, ’S0219876216500158BIB012’, ’000223352400004’); · Zbl 1138.74417
[13] Doxsee, L. E. [1989] ” A higher-order theory of hygrothermal behavior of laminated composite shells,” Int. J. Solids Struct.25(4), 339-355. genRefLink(16, ’S0219876216500158BIB013’, ’10.1016%252F0020-7683%252889%252990052-8’); genRefLink(128, ’S0219876216500158BIB013’, ’A1989U649200001’);
[14] Draiche, K., Tounsi, A. and Khalfi, Y. [2014] ” A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass,” Steel Compos. Struct.17(1), 69-81. genRefLink(16, ’S0219876216500158BIB014’, ’10.12989%252Fscs.2014.17.1.069’); genRefLink(128, ’S0219876216500158BIB014’, ’000344975100004’);
[15] Fekrar, A., Houari, M. S. A., Tounsi, A. and Mahmoud, S. R. [2014] ” A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates,” Meccanica49(4), 795-810. genRefLink(16, ’S0219876216500158BIB015’, ’10.1007%252Fs11012-013-9827-3’); genRefLink(128, ’S0219876216500158BIB015’, ’000333079300004’); · Zbl 1337.74032
[16] Hamidi, A., Houari, M. S. A., Mahmoud, S. R. and Tounsi, A. [2015] ” A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates,” Steel Compos. Struct.18(1), 235-253. genRefLink(16, ’S0219876216500158BIB016’, ’10.12989%252Fscs.2015.18.1.235’); genRefLink(128, ’S0219876216500158BIB016’, ’000350121700012’);
[17] Han, X. and Liu, G. R. [2003] ” Computational inverse technique for material characterization of functionally graded materials,” AIAA J.41(2), 288-295. genRefLink(16, ’S0219876216500158BIB017’, ’10.2514%252F2.1942’);
[18] Han, X., Liu, G. R. and Lam, K. Y. [2001] ” Transient waves in plates of functionally graded materials,” Int. J. Numer. Methods Eng.52(8), 851-865. genRefLink(16, ’S0219876216500158BIB018’, ’10.1002%252Fnme.237’); genRefLink(128, ’S0219876216500158BIB018’, ’000171562300005’);
[19] Han, X., Liu, G. R. and Li, G. Y. [2004] ” Transient response in cross-ply laminated cylinders and its application to reconstruction of elastic constants,” Comput. Mater. Continua1(1), 39-49. genRefLink(128, ’S0219876216500158BIB019’, ’000227719100002’);
[20] Hebali, H., Tounsi, A., Houari, M. S. A., Bessaim, A. and Bedia, E. A. A. [2014] ” A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates,” ASCE J. Eng. Mech.140(2), 374-383. genRefLink(16, ’S0219876216500158BIB020’, ’10.1061%252F%2528ASCE%2529EM.1943-7889.0000665’); genRefLink(128, ’S0219876216500158BIB020’, ’000330837700012’);
[21] Huang, X. L., Shen, H. S. and Zheng, J. J. [2004] ” Nonlinear vibration and dynamic response of shear deformable laminated plates in hygrothermal environments,” Compos. Sci. Technol.64, 1419-1435. genRefLink(16, ’S0219876216500158BIB021’, ’10.1016%252Fj.compscitech.2003.09.028’); genRefLink(128, ’S0219876216500158BIB021’, ’000222231700002’);
[22] Khalfi, Y., Houari, M. S. A. and Tounsi, A. [2014] ” A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation,” Int. J. Comput. Methods11(5), 1350077. [Abstract] genRefLink(128, ’S0219876216500158BIB022’, ’000344257100008’); · Zbl 1359.74095
[23] Kumar, R. and Patil, H. S. [2013] ” Hygrothermally induced nonlinear free vibration response of nonlinear elastically supported laminated composite plates with random system properties,” Front. Aerospace Eng.2(2), 143-156.
[24] Kundu, C. K., Maiti, D. K. and Sinha, P. K. [2007] ” Nonlinear finite element analysis of laminated composite doubly curved shells in hygrothermal environment,” J. Reinf. Plast. Compos.26(14), 1461. genRefLink(16, ’S0219876216500158BIB024’, ’10.1177%252F0731684407079751’); genRefLink(128, ’S0219876216500158BIB024’, ’000249764700007’);
[25] Lal, A., Singh, B. N. and Anand, S. [2011] ” Nonlinear bending response of laminated composite spherical shell panel with system randomness subjected to hygro-thermo-mechanical loading,” Int. J. Mech. Sci.53, 855-866. genRefLink(16, ’S0219876216500158BIB025’, ’10.1016%252Fj.ijmecsci.2011.07.008’); genRefLink(128, ’S0219876216500158BIB025’, ’000295756400006’);
[26] Liu, G. R., Dai, K. Y., Han, X. and Ohyoshi, T. [2003] ” Dispersion of waves and characteristic wave surfaces in functionally graded piezoelectric plates,” J. Sound Vib.268(1), 131-147. genRefLink(16, ’S0219876216500158BIB026’, ’10.1016%252FS0022-460X%252802%252901494-3’); genRefLink(128, ’S0219876216500158BIB026’, ’000186326900009’);
[27] Liu, G. R., Han, X. and Lam, K. Y. [1999] ” Stress waves in functionally gradient materials and its use for material characterization,” Compos. Part B-Eng.30(4), 383-394. genRefLink(16, ’S0219876216500158BIB027’, ’10.1016%252FS1359-8368%252899%252900010-4’); genRefLink(128, ’S0219876216500158BIB027’, ’000080456800004’);
[28] Liu, G. R., Han, X. and Lam, K. Y. [2001] ” Material characterization of FGM plates using elastic waves and an inverse procedure,” J. Compos. Mater.35(11), 954-971. genRefLink(16, ’S0219876216500158BIB028’, ’10.1106%252F86AQ-JY72-5VKT-K1NV’); genRefLink(128, ’S0219876216500158BIB028’, ’000169337600003’);
[29] Liu, C. F. and Huang, C. H. [1996] ” Free vibration of composite laminated plates subjected to temperature changes,” Comput. Struct.60(1), 95-101. genRefLink(16, ’S0219876216500158BIB029’, ’10.1016%252F0045-7949%252895%252900358-4’); genRefLink(128, ’S0219876216500158BIB029’, ’A1996UM70700011’);
[30] Liu, G. R. and Tani, J. [1994] ” Surface-waves in functionally gradient piezoelectric plates,” J. Vib. Acoust. Trans. ASME116(4), 440-448. genRefLink(16, ’S0219876216500158BIB030’, ’10.1115%252F1.2930447’); genRefLink(128, ’S0219876216500158BIB030’, ’A1994PP30000005’);
[31] Liu, G. R., Tani, J. and Ohyoshi, T. [1991a] ” Lamb waves in a functionally gradient material plates and its transient response, Part 1: Theory,” Trans. Japan Soc. Mech. Eng.57(A)(535), 603-608. genRefLink(16, ’S0219876216500158BIB031’, ’10.1299%252Fkikaia.57.603’);
[32] Liu, G. R., Tani, J. and Ohyoshi, T. [1991b] ” Lamb waves in a functionally gradient material plates and its transient response, Part 2: Calculation results,” Trans. Japan Soc. Mech. Eng.57(A)(535), 609-611. genRefLink(16, ’S0219876216500158BIB032’, ’10.1299%252Fkikaia.57.609’);
[33] Mahi, A., Bedia, E. A. A. and Tounsi, A. [2015] ” A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates,” Appl. Math. Model.39(9), 2489-2508. genRefLink(16, ’S0219876216500158BIB033’, ’10.1016%252Fj.apm.2014.10.045’); genRefLink(128, ’S0219876216500158BIB033’, ’000354590200003’);
[34] Meziane, M. A. A., Abdelaziz, H. H. and Tounsi, A. [2014] ” An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions,” J. Sandwich Struct. Mater.16(3), 293-318. genRefLink(16, ’S0219876216500158BIB034’, ’10.1177%252F1099636214526852’); genRefLink(128, ’S0219876216500158BIB034’, ’000334510400003’);
[35] Nanda, N. [2014] ” Static analysis of delaminated composite shell panels using layerwise theory,” Acta Mech.225(10), 2893-2901. genRefLink(16, ’S0219876216500158BIB035’, ’10.1007%252Fs00707-014-1200-7’); genRefLink(128, ’S0219876216500158BIB035’, ’000342423800013’);
[36] Naidu, N. V. S. and Sinha, P. K. [2005] ” Nonlinear finite element analysis of laminated composite shells in hygrothermal environments,” Compos. Struct.69, 387-395. genRefLink(16, ’S0219876216500158BIB036’, ’10.1016%252Fj.compstruct.2004.07.019’); genRefLink(128, ’S0219876216500158BIB036’, ’000230379700001’);
[37] Naidu, N. V. S. and Sinha, P. K. [2007] ” Nonlinear free vibration analysis of laminated composite shells in hygrothermal environments,” Compos. Struct.77(4), 280-288. genRefLink(16, ’S0219876216500158BIB037’, ’10.1016%252Fj.compstruct.2005.08.002’); genRefLink(128, ’S0219876216500158BIB037’, ’000243149800006’);
[38] Nanda, N. and Pradyumna, S. [2011] ” Nonlinear dynamic response of laminated shells with imperfections in hygrothermal environments,” J. Compos. Mater.45(20), 2103-2112. genRefLink(16, ’S0219876216500158BIB038’, ’10.1177%252F0021998311401061’); genRefLink(128, ’S0219876216500158BIB038’, ’000294807000009’);
[39] Panda, S. K. and Mahapatra, T. R. [2014] ” Nonlinear finite element analysis of laminated composite spherical shell vibration under uniform thermal loading,” Meccanica49, 191-213. genRefLink(16, ’S0219876216500158BIB039’, ’10.1007%252Fs11012-013-9785-9’); genRefLink(128, ’S0219876216500158BIB039’, ’000330978000015’);
[40] Parhi, P. K., Bhattacharyya, S. K. and Sinha, P. K. [2001] ” Hygrothermal effects on the dynamic behavior of multiple delaminated composite plates and shells,” J. Sound Vib.248(2), 195-214. genRefLink(16, ’S0219876216500158BIB040’, ’10.1006%252Fjsvi.2000.3506’); genRefLink(128, ’S0219876216500158BIB040’, ’000172346000001’);
[41] Patel, B. P., Ganapathi, M. and Makhecha, D. P. [2002] ” Hygrothermal effects on the structural behavior of thick composite laminates using higher-order theory,” Compos. Struct.56, 25-34. genRefLink(16, ’S0219876216500158BIB041’, ’10.1016%252FS0263-8223%252801%252900182-9’); genRefLink(128, ’S0219876216500158BIB041’, ’000174590600004’);
[42] Reddy, J. N. [2004] Mechanics of Laminated Composite – Plates and Shells – Theory and Analysis, 2nd Edition (CRC Press, Boca Raton, FL). · Zbl 1075.74001
[43] Reddy, J. N. [2004] An Introduction to Nonlinear Finite Element Analysis (Oxford University Press, Cambridge, UK). genRefLink(16, ’S0219876216500158BIB043’, ’10.1093%252Facprof%253Aoso%252F9780198525295.001.0001’); · Zbl 1057.65087
[44] Ribeiro, P. and Jansen, E. [2008] ” Non-linear vibrations of laminated cylindrical shallow shells under thermo mechanical loading,” J. Sound Vib.315, 626-640. genRefLink(16, ’S0219876216500158BIB044’, ’10.1016%252Fj.jsv.2008.01.017’); genRefLink(128, ’S0219876216500158BIB044’, ’000257516900015’);
[45] Sai Ram, K. S. and Sinha, P. K. [1991] ” Hygrothermal effects on the bending characteristics of laminated composite plates,” Comput. Struct.40(4), 1009-1015. genRefLink(16, ’S0219876216500158BIB045’, ’10.1016%252F0045-7949%252891%252990332-G’); genRefLink(128, ’S0219876216500158BIB045’, ’A1991GB19300024’);
[46] Sharma, A., Upadhyay, A. K. and Shukla, K. K. [2013] ” Flexural response of doubly curved laminated composite shells,” Sci. China Phys. Mech. Astron.56(4), 812-817. genRefLink(16, ’S0219876216500158BIB046’, ’10.1007%252Fs11433-013-5020-x’); genRefLink(128, ’S0219876216500158BIB046’, ’000316819000020’);
[47] Shen, H. S. [2002] ” Hygrothermal effects on the nonlinear bending of shear deformable laminated plates,” J. Eng. Mech.128(4), 493-496. genRefLink(16, ’S0219876216500158BIB047’, ’10.1061%252F%2528ASCE%25290733-9399%25282002%2529128%253A4%2528493%2529’); genRefLink(128, ’S0219876216500158BIB047’, ’000174669000013’);
[48] Sundaramoorthy, R., David, W. and Murray, M. [1973] ” Incremental finite element matrices,” ASCE J. Struct. Div., 99, 2423-2438.
[49] Tani, J. and Liu, G. R. [1993] ” SH surface-waves in functionally gradient piezoelectric plates,” JSME Int. J. Ser. A-Mech. Mater. Eng.36(2), 152-155.
[50] Tounsi, A., Houari, M. S. A., Benyoucef, S. and Bedia, E. A. A. [2013] ” A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates,” Aerospace Sci. Technol.24(1), 209-220. genRefLink(16, ’S0219876216500158BIB050’, ’10.1016%252Fj.ast.2011.11.009’); genRefLink(128, ’S0219876216500158BIB050’, ’000317995400024’);
[51] Upadhyay, P. C. and Lyons, J. S. [2000] ” Effect of hygrothermal environment on the bending of pmc laminates under large deflection,” J. Reinf. Plastics Compos.19(6), 465. genRefLink(16, ’S0219876216500158BIB051’, ’10.1106%252F5TP7-CX5C-88RK-BJ4C’); genRefLink(128, ’S0219876216500158BIB051’, ’000086215500003’);
[52] Upadhyay, A. K., Pandey, R. and Shukla, K. K. [2010] ” Nonlinear flexural response of laminated composite plates under hygro-thermo-mechanical loading,” Commun. Nonlinear Sci. Numer. Simul.15, 2634-2650. genRefLink(16, ’S0219876216500158BIB052’, ’10.1016%252Fj.cnsns.2009.08.026’); genRefLink(128, ’S0219876216500158BIB052’, ’000276821300043’); · Zbl 1222.74020
[53] Yahia, S. A., Atmane, H. A., Houari, M. S. A. and Tounsi, A. [2015] ” Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories,” Struct. Eng. Mech.53(6), 1143-1165. genRefLink(16, ’S0219876216500158BIB053’, ’10.12989%252Fsem.2015.53.6.1143’); genRefLink(128, ’S0219876216500158BIB053’, ’000352389100005’);
[54] Zenkour, A. M. [2004] ” Thermal effects on the bending response of fiber-reinforced viscoelastic composite plates using a sinusoidal shear deformation theory,” Acta Mech.171(3-4), 171-187. genRefLink(16, ’S0219876216500158BIB054’, ’10.1007%252Fs00707-004-0145-7’); genRefLink(128, ’S0219876216500158BIB054’, ’000224535700003’); · Zbl 1068.74042
[55] Zenkour, A. M. [2012] ” Hygrothermal effects on the bending of angle-ply composite plates using a sinusoidal theory,” Compos. Struct.94, 3685-3696. genRefLink(16, ’S0219876216500158BIB055’, ’10.1016%252Fj.compstruct.2012.05.033’); genRefLink(128, ’S0219876216500158BIB055’, ’000308049900027’);
[56] Zhang, Y. X. and Kim, K. S. [2006] ” Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate elements,” Compos. Struct.72, 301-310. genRefLink(16, ’S0219876216500158BIB056’, ’10.1016%252Fj.compstruct.2005.01.001’); genRefLink(128, ’S0219876216500158BIB056’, ’000236019800004’);
[57] Zhang, Y. X. and Yang, C. H. [2006] ” A family of simple and robust finite elements for linear and geometrically nonlinear analysis of laminated composite plates,” Compos. Struct.75, 545-552. genRefLink(16, ’S0219876216500158BIB057’, ’10.1016%252Fj.compstruct.2006.04.016’); genRefLink(128, ’S0219876216500158BIB057’, ’000239828900070’);
[58] Zidi, M., Tounsi, A., Houari, M. S. A., Bedia, E. A. A. and Beg, O. A. [2014] ” Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory,” Aerospace Sci. Technol.34, 24-34. genRefLink(16, ’S0219876216500158BIB058’, ’10.1016%252Fj.ast.2014.02.001’); genRefLink(128, ’S0219876216500158BIB058’, ’000335280500004’);
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.