×

Analytical solution for vibration of a rotating delaminated composite beam with end mass. (English) Zbl 1359.74140

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74E30 Composite and mixture properties
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] 1. S. Krishnaswamy, K. Chandrashekhara and W. Z. B. Wu, Analytical solutions to vibration of generally layered composite beams, J. Sound. Vibr.159 (1) (1992) 85-99. genRefLink(16, ’S0219455415500133BIB001’, ’10.1016
[2] 2. M. H. Kadivar and S. R. Mohebpour, Forced vibration of unsymmetric laminated composite beams under the action of moving loads, Compos. Sci. Technol.58 (1998) 1675-1684. genRefLink(16, ’S0219455415500133BIB002’, ’10.1016
[3] 3. M. T. Ahmadian, R. A. Jafari-Talookolaei and E. Esmailzadeh, Dynamics of a laminated composite beam on Pasternak visco-elastic foundation subjected to a moving oscillator, J. Vibr. Control.14 (6) (2008) 807-830. genRefLink(16, ’S0219455415500133BIB003’, ’10.1177 · Zbl 1272.74240
[4] 4. R. A. Jafari-Talookolaei, M. H. Kargarnovin and M. T. Ahmadian, Free vibration analysis of cross-ply layered composite beams with finite length on elastic foundation, Int. J. Comput. Methods5 (1) (2008) 21-36. [Abstract] · Zbl 1257.74071
[5] 5. R. A. Jafari-Talookolaei, M. Abedi, M. H. Kargarnovin and M. T. Ahmadian, An analytical approach for the free vibration analysis of generally laminated composite beams with shear effect and rotary inertia, Int. J. Mech. Sci.65 (2012) 97-104. genRefLink(16, ’S0219455415500133BIB005’, ’10.1016
[6] 6. J. T. S. Wang, Y. Y. Liu and J. A. Gibby, Vibrations of split beams, J. Sound. Vibr.84 (4) (1982) 491-502. genRefLink(16, ’S0219455415500133BIB006’, ’10.1016
[7] 7. P. M. Mujumdar and S. Suryanarayan, Flexural vibrations of beams with delaminations, J. Sound. Vibr.125 (3) (1988) 441-461. genRefLink(16, ’S0219455415500133BIB007’, ’10.1016
[8] 8. M. H. H. Shen and J. E. Grady, Free vibrations of delaminated beams, AIAA J30 (5) (1992) 1361-1370. genRefLink(16, ’S0219455415500133BIB008’, ’10.2514
[9] 9. D. Shu and C. N. Della, Free vibration analysis of composite beams with two non overlapping delaminations, Int. J. Mech. Sci.46 (2004) 509-526. genRefLink(16, ’S0219455415500133BIB009’, ’10.1016 · Zbl 1330.74077
[10] 10. C. N. Della and D. Shu, Free vibration analysis of composite beams with overlapping delaminations, Eur. J. Mech. A/Solids24 (2005) 491-503. genRefLink(16, ’S0219455415500133BIB010’, ’10.1016 · Zbl 1176.74083
[11] 11. C. N. Della and D. Shu, Vibration of beams with two overlapping delaminations in prebuckled states, Compos. Part B: Eng.38 (2007) 109-18. genRefLink(16, ’S0219455415500133BIB011’, ’10.1016
[12] 12. C. N. Della and D. Shu, Vibration of beams with double delaminations, J. Sound Vibr.282 (2005) 919-935. genRefLink(16, ’S0219455415500133BIB012’, ’10.1016
[13] 13. C. N. Della and D. Shu, Vibration of delaminated multilayer beams, Compos. Part B: Eng.37 (2006) 227-236. genRefLink(16, ’S0219455415500133BIB013’, ’10.1016
[14] 14. M. H. Kargarnovin, M. T. Ahmadian and R. A. Jafari-Talookolaei, Analytical solution for the dynamic analysis of a delaminated composite beam traversed by a moving constant force, J. Vibr. Control19 (10) (2013) 1524-1537. genRefLink(16, ’S0219455415500133BIB014’, ’10.1177
[15] 15. H. Luo and S. Hanagud, Dynamics of delaminated beams, Int. J. Solids Struct.37 (2000) 1501-1519. genRefLink(16, ’S0219455415500133BIB015’, ’10.1016
[16] 16. R. A. Jafari-Talookolaei, M. H. Kargarnovin and M. T. Ahmadian, Dynamic response of a delaminated composite beam with general lay-ups based on the first-order shear deformation theory, Compos. Part B: Eng.55 (2013) 65-78. genRefLink(16, ’S0219455415500133BIB016’, ’10.1016
[17] 17. J. Mohanty, S. K. Sahu and P. K. Parhi, Numerical and experimental study on free vibration of delaminated woven fiber glass/epoxy composite plates, Int. J. Str. Stab. Dynam.12 (2012) 377-394. [Abstract] genRefLink(128, ’S0219455415500133BIB017’, ’000301237500008’);
[18] 18. C. N. Della and D. Shu, Vibration of delaminated composite laminates: A review, Appl. Mech. Rev.60 (1) (2007) 1-20. genRefLink(16, ’S0219455415500133BIB018’, ’10.1115
[19] 19. I. Trendafilova, R. Palazzetti and A. Zucchelli, Delamination assessment in structures made of composites based on general signal correlation, Int. J. Str. Stab. Dynam.14 (8) (2014), doi: [10.1142/S0219455414400227] . genRefLink(128, ’S0219455415500133BIB019’, ’000345583800011’); · Zbl 06930889
[20] 20. Y. H. Kuo, T. H. Wu and S. Y. Lee, Bending vibrations of a rotating non-uniform beam with tip mass and an elastically restrained root, Compos. Struct.42 (2) (1992) 229-236. genRefLink(16, ’S0219455415500133BIB020’, ’10.1016
[21] 21. Y. A. Khulief and A. Bazoune, Frequencies of rotating tapered Timoshenko beams with different boundary conditions, Compos. Struct.42 (5) (1992) 781-795. genRefLink(16, ’S0219455415500133BIB021’, ’10.1016
[22] 22. H. Du, M. K. Lim and K. M. Liew, A power series solution for vibration of a rotating Timoshenko beam, J. Sound Vibr.175 (1994) 505-523. genRefLink(16, ’S0219455415500133BIB022’, ’10.1006
[23] 23. H. Su, D. R. Jackson and J. R. Banerjee, Free vibration of rotating tapered beams using the dynamic stiffness method, J. Sound Vibr.298 (2006) 1034-1054. genRefLink(16, ’S0219455415500133BIB023’, ’10.1016
[24] 24. C. F. J. Kuo, H. M. Tu, V. Q. Huy and C. H. Liu, Dynamic stability analysis and vibration control of a rotating elastic beam connected with an end mass, Int. J. Str. Stab. Dynam.13 (2013) Article ID 1250066, 24 pages. · Zbl 1359.70098
[25] 25. Y. Liu and D. W. Shu, Free vibration analysis of rotating Timoshenko beams with multiple delaminations, Compos. Part B: Eng.44 (2013) 733-739. genRefLink(16, ’S0219455415500133BIB025’, ’10.1016
[26] 26. R. M. Jones, Mechanics of Composite Material (McGraw-Hill, New York, 1975).
[27] 27. K. Washizu, Variational Methods in Elasticity and Plasticity (Pergamon Press, New York, 1982). · Zbl 0498.73014
[28] 28. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th edn. (Elsevier Inc, 2007). · Zbl 1208.65001
[29] 29. K. Chandrashekhara, K. Krishnamurthy and S. Roy, Free vibration of composite beams including rotary inertia and shear deformation, Compos. Struct.14 (1990) 269-279. genRefLink(16, ’S0219455415500133BIB029’, ’10.1016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.