Buckling of composite plates with arbitrary boundary conditions by a semi-analytical approach. (English) Zbl 1359.74103


74G60 Bifurcation and buckling
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics
74K20 Plates
74A40 Random materials and composite materials
74E30 Composite and mixture properties
Full Text: DOI


[1] DOI: 10.1016/S0263-8223(01)00162-3
[2] Armentani E., J. Achiev. Mat. Manuf. Eng. 19 pp 53–
[3] DOI: 10.1007/s10704-008-9297-0 · Zbl 1308.74158
[4] DOI: 10.1142/S021945541000349X · Zbl 1271.74196
[5] DOI: 10.1142/S0219455407002241
[6] Minutolo V., CMES 41 pp 27–
[7] Timoshenko P., Theory of Elastic Stability (1963)
[8] Lekhnitskii S. G., Anisotropic Plates (1968)
[9] Mariam J. J., Int. J. Struct. Stab. Dyn. 3 pp 523–
[10] DOI: 10.1016/j.compstruct.2006.11.001
[11] DOI: 10.1177/002199801772662109
[12] DOI: 10.1016/j.tws.2011.03.014
[13] DOI: 10.1016/j.tws.2011.03.013
[14] DOI: 10.1007/s10237-009-0183-0
[15] DOI: 10.1016/j.tws.2012.06.016
[16] DOI: 10.1016/j.engstruct.2011.12.049
[17] DOI: 10.1142/S0219455411003963 · Zbl 1271.74099
[18] DOI: 10.1016/j.compstruct.2007.02.003
[19] DOI: 10.1016/j.compstruct.2004.04.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.