×

zbMATH — the first resource for mathematics

A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates. (English) Zbl 1359.74084

MSC:
74G60 Bifurcation and buckling
74K20 Plates
74A40 Random materials and composite materials
74G15 Numerical approximation of solutions of equilibrium problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/s10999-010-9110-x
[2] DOI: 10.1177/0731684407081766
[3] DOI: 10.1007/s11029-010-9159-5
[4] DOI: 10.12989/scs.2013.14.1.085
[5] DOI: 10.1016/j.compositesb.2010.10.005
[6] DOI: 10.2514/1.32490
[7] DOI: 10.1007/s00466-004-0566-0 · Zbl 1138.74417
[8] DOI: 10.1016/j.compstruc.2004.09.020
[9] DOI: 10.1115/1.3167098 · Zbl 0542.73118
[10] DOI: 10.1016/S0020-7683(00)00219-5 · Zbl 0977.74035
[11] DOI: 10.1002/nme.237 · Zbl 1017.74035
[12] DOI: 10.1002/nme.305 · Zbl 1112.74406
[13] Koizumi M., Ceram. Trans. Funct. Grad. Mater. 34 pp 3– (1993)
[14] DOI: 10.1299/kikaia.57.603
[15] DOI: 10.1299/kikaia.57.609
[16] Liu G. R., Trans. Jpn. Soc. Mech. Eng. A 58 pp 504– (1992)
[17] DOI: 10.1115/1.2930447
[18] DOI: 10.1016/S1359-8368(99)00010-4
[19] DOI: 10.1016/S0045-7949(00)00197-8
[20] DOI: 10.1106/86AQ-JY72-5VKT-K1NV
[21] DOI: 10.1016/S0266-3538(01)00033-1
[22] DOI: 10.1016/S0022-460X(02)01494-3
[23] DOI: 10.1080/15376494.2011.581409
[24] Mindlin R. D., J. Appl. Mech. 18 pp 31– (1951)
[25] DOI: 10.1016/j.compstruct.2010.08.016
[26] DOI: 10.1016/j.mechrescom.2011.04.011 · Zbl 1272.74412
[27] DOI: 10.1016/j.compositesb.2011.08.009
[28] DOI: 10.1016/j.compstruct.2011.12.005
[29] DOI: 10.1080/15397734.2013.763713
[30] DOI: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8 · Zbl 0970.74041
[31] Reissner E., J. Appl. Mech. 12 pp 69– (1945)
[32] Suresh S., Fundamentals of Functionally Graded Materials (1998)
[33] Tani J., JSME Int. J. Series A – Mech. Mater. Eng. 36 pp 152– (1993)
[34] DOI: 10.1016/j.compscitech.2004.11.012
[35] DOI: 10.1016/j.commatsci.2008.05.016
[36] DOI: 10.1016/j.apm.2005.03.009 · Zbl 1163.74529
[37] DOI: 10.1016/j.ijmecsci.2009.09.026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.