zbMATH — the first resource for mathematics

A complete algorithm for the reduction of pattern data in the classification of interval information. (English) Zbl 1359.62251
62H30 Classification and discrimination; cluster analysis (statistical aspects)
62G07 Density estimation
Full Text: DOI
[1] Babich, G. A. and Camps, O. I. [1996] ” Weighted Parzen windows for pattern classification,” IEEE Trans. Pattern Anal. Mach. Intell.18, 567-570. genRefLink(16, ’S0219876216500183BIB001’, ’10.1109%252F34.494647’); genRefLink(128, ’S0219876216500183BIB001’, ’A1996UL69100010’);
[2] Brandt, S. [1999] Data Analysis (Springer Verlag, New York, Berlin, Heidelberg). genRefLink(16, ’S0219876216500183BIB002’, ’10.1007%252F978-1-4612-1446-5’); · Zbl 0983.62001
[3] Chetwynd, D., Worden, K. and Manson, G. [2006] ” An application of interval-valued neural networks to a regression problem,” Proc. R. Soc. A462, 3097-3114. genRefLink(16, ’S0219876216500183BIB003’, ’10.1098%252Frspa.2006.1717’); · Zbl 1149.92301
[4] Duda, R. O., Hart, P. E. and Stork, D. G. [2000] Pattern Classification (Wiley, New York).
[5] Drakengren, T. and Jonsson, P. [1997] ” Eight maximal tractable subclasses of Allen’s algebra with metric time,” J. Artif. Intell. Res.7, 25-45. genRefLink(128, ’S0219876216500183BIB005’, ’A1997XT60600002’); · Zbl 0894.68144
[6] Engelbrecht, A. P., Fletcher, L. and Cloete, I. [1999] ” Subharmonic solutions with prescribed minimal period for nonautonomous Hamiltonian systems,” Int. Joint Conf. Neural Networks, IJCNN’99, Vol. 3, pp. 1829-1833.
[7] Engelbrecht, A. P. [2001] ” Sensitivity analysis for selective learning by feedforward neural networks,” Fundam. Inf.46(3), 219-252. genRefLink(128, ’S0219876216500183BIB007’, ’000170218400003’); · Zbl 0974.68171
[8] Gil, M. A. and Hryniewicz, O. [2009] ” Statistics with imprecise data,” in Encyclopedia of Complexity and Systems Science, ed. Meyers, R. A. (Springer, Heidelberg), pp. 8679-8690.
[9] Ghost, A. K., Chaudhuri, P. and Sengupta, D. [2006] ” Classification using kernel density estimation: Multiscale analysis and visualization,” Technometrics48, 120-132. genRefLink(16, ’S0219876216500183BIB009’, ’10.1198%252F004017005000000391’); genRefLink(128, ’S0219876216500183BIB009’, ’000235129800012’);
[10] Han, J. and Kamber, M. [2006] Data Mining: Concepts and Techniques (Morgan Kaufmann, San Francisco). · Zbl 1445.68004
[11] Jaulin, L., Kieffer, M., Didrit, O. and Walter, E. [2001] Applied Interval Analysis (Springer, Berlin). genRefLink(16, ’S0219876216500183BIB011’, ’10.1007%252F978-1-4471-0249-6’); · Zbl 1023.65037
[12] Kacprzyk, J. [1997] Multistage Fuzzy Control: A Model-Based Approach to Fuzzy Control and Decision Making (Wiley, Chichester). · Zbl 0919.93001
[13] Kowalski, P. A. [2009] ”Bayesian classification of imprecise interval-type information,” Ph.D. Thesis, Systems Research Institute, Polish Academy of Sciences (in Polish).
[14] Kowalski, P. A. and Kulczycki, P. [2010] ” Data sample reduction for classification of interval information using neural network sensitivity analysis, Artificial Intelligence: Methodology, Systems, and Applications, Vol. 6304 of the Series, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg, pp. 271-272.
[15] Kulczycki, P. [2008] ” Kernel estimators in industrial applications,” in Soft Computing Applications in Industry, ed. Prasad, B. (Springer-Verlag, Berlin), pp. 69-91. genRefLink(16, ’S0219876216500183BIB015’, ’10.1007%252F978-3-540-77465-5_4’);
[16] Kulczycki, P. [2009] ” Statistical kernel estimators for data analysis and exploration tasks: Theory and applications,” Proc. 14th WSEAS Int. Conf. Applied Mathematics, pp. 257-262.
[17] Kulczycki, P. and Kowalski, P. A. [2011] ” Bayes classification of imprecise information of interval type,” Control Cybern.40(1), 101-123. · Zbl 1318.62212
[18] Kulczycki, P. and Kowalski, P. A. [2015] ” Bayes classification for nonstationary patterns,” Int. J. Comput. Methods12(2), 1550008-1-19. [Abstract] genRefLink(128, ’S0219876216500183BIB018’, ’000352446100006’); · Zbl 1359.62253
[19] Lukasik, S. and Kulczycki, P. [2011] ” An algorithm for sample and data dimensionality reduction using fast simulated annealing,” in Advanced Data Mining and Applications, eds. Tang, J., King, I., Chen, L. and Wang, J., Lecture Notes in Artificial Intelligence, Vol. 7120 of the Series, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 152-161.
[20] Mitra, P, Murthy, C. A. and Pal, S. K. [2002] ” Density-based multiscale data condensation,” IEEE Trans. Pattern Anal. Mach. Intell.24, 734-747. genRefLink(16, ’S0219876216500183BIB020’, ’10.1109%252FTPAMI.2002.1008381’); genRefLink(128, ’S0219876216500183BIB020’, ’000175846300003’);
[21] Peng, W. and Li, T. [2006] ” Interval data clustering with applications,” Proc. 8th IEEE Int. Conf. Tools with Artificial Intelligence, Arlington, 13-15 November, pp. 355-362.
[22] Ripley, B. D. [1996] Pattern Recognition and Neural Networks (Cambridge University Press, Cambridge). genRefLink(16, ’S0219876216500183BIB022’, ’10.1017%252FCBO9780511812651’); · Zbl 0853.62046
[23] Sato-Ilic, M. [2003] ” Weighted principal component analysis for interval-valued data based on fuzzy clustering,” Proc. Int. Conf. Systems, Man and Cybernetics, Washington, Vol. 5, 5-8 September, pp. 4476-4482.
[24] Silverman, B. W. [1986] Density Estimation for Statistics and Data Analysis (Chapman and Hall, London). genRefLink(16, ’S0219876216500183BIB024’, ’10.1007%252F978-1-4899-3324-9’);
[25] Wand, M. P. and Jones, M. C. [1995] Kernel Smoothing (Chapman and Hall, London). genRefLink(16, ’S0219876216500183BIB025’, ’10.1007%252F978-1-4899-4493-1’);
[26] Wu, X. and Kumar, V. [2009] The Top Ten Algorithms in Data Mining (Chapman and Hall, Boca Raton). genRefLink(16, ’S0219876216500183BIB026’, ’10.1201%252F9781420089653’);
[27] Yeung, D. S., Cloete, I., Shi, D. and Ng, W. W. Y. [2010] Sensitivity Analysis for Neural Networks (Springer-Verlag, Berlin Heidelberg). genRefLink(16, ’S0219876216500183BIB027’, ’10.1007%252F978-3-642-02532-7’); · Zbl 1189.68104
[28] Zhao, Y., He, Q. and Chen, Q. [2005] ”An interval set classification based on support vector machines,” Proc. Joint Int. Conf. Autonomic and Autonomous Systems, 2nd Int. Conf. Networking and Services, Silicon Valley, 25-30 September 2005, pp. 81-86.
[29] Zurada, J. [1992] Introduction to Artificial Neural Neural Systems (West Publishing Co, St. Paul).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.