×

Predictor-based stabilisation for discrete nonlinear systems with state-dependent input delays. (English) Zbl 1358.93138

Summary: We consider predictor-based stabilization for discrete nonlinear systems with state-dependent input delays. The key design is how to determine the prediction horizon and the predictor state. Sufficient conditions for stabilization of the closed-loop system are obtained. An explicit feedback law is presented for compensating state-dependent input delay. Since input delay is dependent on state, a region of attraction is estimated for the closed-loop system. The proposed predictor-based design can be applied in controlling the yaw angular displacement of a four-rotor mini-helicopter.

MSC:

93D15 Stabilization of systems by feedback
93C10 Nonlinear systems in control theory
93C55 Discrete-time control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1115/1.2831201 · doi:10.1115/1.2831201
[2] DOI: 10.1080/00207720903353567 · Zbl 1230.93075 · doi:10.1080/00207720903353567
[3] DOI: 10.1049/iet-cta.2009.0208 · doi:10.1049/iet-cta.2009.0208
[4] DOI: 10.1080/23307706.2014.885290 · doi:10.1080/23307706.2014.885290
[5] DOI: 10.1002/rnc.3083 · Zbl 1305.93167 · doi:10.1002/rnc.3083
[6] DOI: 10.1016/j.automatica.2016.01.043 · Zbl 1334.93087 · doi:10.1016/j.automatica.2016.01.043
[7] DOI: 10.1049/iet-cta.2014.1085 · doi:10.1049/iet-cta.2014.1085
[8] DOI: 10.1049/iet-cta.2015.0652 · doi:10.1049/iet-cta.2015.0652
[9] DOI: 10.1002/rnc.3382 · Zbl 1342.93061 · doi:10.1002/rnc.3382
[10] Goodwin G., Adaptive filtering prediction and control (1984) · Zbl 0653.93001
[11] DOI: 10.1016/j.automatica.2013.05.031 · Zbl 1364.93706 · doi:10.1016/j.automatica.2013.05.031
[12] DOI: 10.1016/j.conengprac.2011.09.001 · doi:10.1016/j.conengprac.2011.09.001
[13] DOI: 10.1016/j.automatica.2011.10.005 · Zbl 1260.93144 · doi:10.1016/j.automatica.2011.10.005
[14] Hansen M., Modeling of nonlinear marine cooling systems with closed circuit flow (2011)
[15] DOI: 10.1016/S0005-1098(01)00028-0 · Zbl 0989.93082 · doi:10.1016/S0005-1098(01)00028-0
[16] DOI: 10.1007/978-0-8176-4877-0 · doi:10.1007/978-0-8176-4877-0
[17] Lee Y.S., Delay-dependent robust stabilization of uncertain discrete-time state-delayed systems (2002)
[18] DOI: 10.1109/TAC.2011.2146850 · Zbl 1368.93102 · doi:10.1109/TAC.2011.2146850
[19] DOI: 10.1016/j.automatica.2003.10.007 · Zbl 1070.93042 · doi:10.1016/j.automatica.2003.10.007
[20] DOI: 10.1006/jtbi.1997.0537 · doi:10.1006/jtbi.1997.0537
[21] DOI: 10.1109/TAC.1979.1102124 · Zbl 0425.93029 · doi:10.1109/TAC.1979.1102124
[22] DOI: 10.1080/002071798221614 · Zbl 0938.93591 · doi:10.1080/002071798221614
[23] Niemeyer G., Beyond webcams: An introduction to online robots pp 193– (2001)
[24] Sterman J.D., Business dynamics: Systems thinking and modeling for a complex world. (2000)
[25] DOI: 10.1002/rnc.3006 · Zbl 1302.93168 · doi:10.1002/rnc.3006
[26] DOI: 10.1111/j.1934-6093.2005.tb00244.x · doi:10.1111/j.1934-6093.2005.tb00244.x
[27] DOI: 10.1016/j.automatica.2008.04.017 · Zbl 1152.93453 · doi:10.1016/j.automatica.2008.04.017
[28] DOI: 10.1109/CDC.2010.5717135 · doi:10.1109/CDC.2010.5717135
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.