×

zbMATH — the first resource for mathematics

Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. (English) Zbl 1358.90109

MSC:
90C26 Nonconvex programming, global optimization
90C30 Nonlinear programming
49M37 Numerical methods based on nonlinear programming
65K10 Numerical optimization and variational techniques
Software:
iPiano; L-BFGS
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] M. Aharon, M. Elad, and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process., 54 (2006), pp. 4311–4322. · Zbl 1375.94040
[2] F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), pp. 3–11. · Zbl 0991.65056
[3] H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, Math. Program., 116 (2009), pp. 5–16. · Zbl 1165.90018
[4] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality, Math. Oper. Res., 35 (2010), pp. 438–457. · Zbl 1214.65036
[5] H. Attouch, J. Bolte, and B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss–Seidel methods, Math. Program., 137 (2013), pp. 91–129. · Zbl 1260.49048
[6] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), pp. 183–202. · Zbl 1175.94009
[7] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation, Prentice-Hall, Englewood Cliffs, NJ, 1989. · Zbl 0743.65107
[8] J. Bolte, A. Daniilidis, and A. Lewis, The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems, SIAM J. Optim., 17 (2006), pp. 1205–1223. · Zbl 1129.26012
[9] J. Bolte, A. Daniilidis, O. Ley, and L. Mazet, Characterizations of Łojasiewicz inequalities: Subgradient flows, talweg, convexity, Trans. Amer. Math. Soc., 362 (2010), pp. 3319–3363. · Zbl 1202.26026
[10] J. Bolte, S. Sabach, and M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Math. Program. Ser. A, 146 (2014), pp. 459–494. · Zbl 1297.90125
[11] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), pp. 1168–1200. · Zbl 1179.94031
[12] Y. Drori and M. Teboulle, Performance of first-order methods for smooth convex minimization: A novel approach, Math. Program., 145 (2014), pp. 451–482. · Zbl 1300.90068
[13] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T.Chandra, Efficient projections onto the l1-ball for learning in high dimensions, in Proceedings of the 25th International Conference on Machine Learning, ICML ’08, 2008, pp. 272–279.
[14] R. I. Boţ and E. R. Csetnek, An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems, J. Optim. Theory Appl., (2015), pp. 1–17.
[15] D. D. Lee and H. S. Seung, Learning the parts of objects by nonnegative matrix factorization, Nature, 401 (1999), pp. 788–791. · Zbl 1369.68285
[16] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, Understanding and evaluating blind deconvolution algorithms, in Proceedings of Computer Vision and Patter Recognition (CVPR), 2009.
[17] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Appl. Math., 16 (1979), pp. 964–979. · Zbl 0426.65050
[18] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program., 45 (1989), pp. 503–528. · Zbl 0696.90048
[19] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation: I, Grundlehren Math. Wiss. 330, Springer-Verlag, Berlin, 2006.
[20] J. J. Moreau, Proximitéet dualité dans un espace Hilbertien, Bull. Soc. Math. France, 93 (1965), pp. 273–299. · Zbl 0136.12101
[21] Y. Nesterov, Introductory Lectures on Convex Optimization, Appl. Optim. 87, Kluwer Academic, Boston, 2004. · Zbl 1086.90045
[22] Y. E. Nesterov, A method for solving the convex programming problem with convergence rate \(O(1/k\sp{2})\), Dokl. Akad. Nauk SSSR, 269 (1983), pp. 543–547.
[23] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer-Verlag, Berlin, 2006. · Zbl 1104.65059
[24] P. Ochs, Y. Chen, T. Brox, and T. Pock, iPiano: Inertial proximal algorithm for nonconvex optimization, SIAM J. Imaging Sci., 7 (2014), pp. 1388–1419. · Zbl 1296.90094
[25] B. A. Olshausen and D. J. Field, Sparse coding with an overcomplete basis set: A strategy employed by v\(1\)?, Vis. Res., 37 (1997), pp. 3311–3325.
[26] P. Paatero and U. Tapper, Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values, Environmetrics, 5 (1994), pp. 111–126.
[27] R. Peharz and F. Pernkopf, Sparse nonnegative matrix factorization with \(ℓ 0\)-constraints, Neurocomputing, 80 (2012), pp. 38–46.
[28] D. Perrone, R. Diethelm, and P. Favaro, Blind deconvolution via lower-bounded logarithmic image priors, in Proceedings of the International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), 2015.
[29] B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), pp. 1–17.
[30] B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys.
[31] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Grundlehren Math. Wiss. 317, Springer-Verlag, Berlin, 1998.
[32] F. Samaria and A. Harter, Parameterisation of a stochastic model for human face identification, in WACV, IEEE, 1994, pp. 138–142.
[33] S. Sra and I. S. Dhillon, Generalized nonnegative matrix approximations with Bregman divergences, in Advances in Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and J. C. Platt, eds., MIT Press, Cambridge, MA, 2006, pp. 283–290.
[34] Y. Xu and W. Yin, A Globally Convergent Algorithm for Nonconvex Optimization Based on Block Coordinate Update, Technical report, preprint, arXiv:1410:1386, 2014. · Zbl 1378.65126
[35] S. K. Zavriev and F. V. Kostyuk, Heavy-ball method in nonconvex optimization problems, Comput. Math. Model., 4 (1993), pp. 336–341. · Zbl 1331.90056
[36] M. Zeiler, D. Krishnan, G. Taylor, and R. Fergus, Deconvolutional networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.