×

A 3-D analytic eddy current model for a finite width conductive plate. (English) Zbl 1358.78011

Summary: Purpose{ } - A 3-D analytic modeling technique for calculating the eddy current distribution, force and power loss in a conductive plate of finite width and thickness is presented. The derived equations are expressed in a general form so that any magnetic source can be utilized. The model assumes the length of the conductive plate is large and the thickness of the plate is thin but not negligible. The paper aims to discuss these issues.
Design/methodology/approach{ } - The conducting and non-conducting regions are formulated in terms of decoupled magnetic vector potential components. In order to accurately compute the eddy current fields and forces the source field only needs to be applied on the surface of the conducting plate. The primary focus is on reducing the eddy current computational time.
Findings{ } - The accuracy of the presented approach is verified by utilizing a magnetic rotor that has both a rotational and translational motion. The proposed method is computationally efficient and its accuracy is validated using the finite element method. Research limitations/implications{ } - The conducting plate thickness is assumed to be thin (but not negligible), and this enables the field interaction through the edge of the plate to be neglected. The lateral force is not calculated in the proposed approach.
Practical implications{ } - The calculation procedure presented is computationally fast and therefore this can enable the 3-D eddy current forces to be computed in near real-time.
Originality/value{ } - This paper presents a fully 3-D analytic based eddy current formlation for computing the eddy current fields and forces in a conducting plate of finite thickness and finite width. The modeling approach is shown to be computationally accurate and relatively fast.

MSC:

78A25 Electromagnetic theory (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albanese, R. , Rubinacci, G. , Tamburrino, A. , Ventre, S. and Villone, F. (2001), ”A fast 3D eddy current integral formulation”, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 20 No. 2, pp. 317-331. , · Zbl 1033.78519 · doi:10.1108/COMPEL-03-2013-0083
[2] Bird, J. and Lipo, T.A. (2008), ”A 3-D magnetic charge finite-element model of an electrodynamic wheel”, IEEE Transactions on Magnetics, Vol. 44 No. 2, pp. 253-265. , · Zbl 1358.78011 · doi:10.1108/COMPEL-03-2013-0083
[3] Bird, J. and Lipo, T.A. (2009), ”Modeling the 3-D rotational and translational motion of a halbach rotor above a split-sheet guideway”, IEEE Transactions on Magnetics, Vol. 45 No. 9, pp. 3233-3242. , · Zbl 1358.78011 · doi:10.1108/COMPEL-03-2013-0083
[4] Biro, O. and Preis, K. (1989), ”On the use of the magnetic vector potential in the finite-element analysis of three-dimensional eddy currents”, IEEE Transactions on Magnetics, Vol. 25 No. 4, pp. 3145-3159. , · Zbl 1358.78011 · doi:10.1108/COMPEL-03-2013-0083
[5] Burke, S.K. and Ibrahim, M.E. (2004), ”Mutual impedance of air-cored coils above a conducting plate”, J. Phys. D: Appl. Phys., Vol. 37, pp. 1857-1868. , · Zbl 1358.78011 · doi:10.1108/COMPEL-03-2013-0083
[6] Canova, A. , Ottella, M. and Hill-Cottingham, R.J. (2001), ”3D eddy current FE analysis of electromechanical devices”, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 20 No. 2, pp. 332-347. , · Zbl 0986.78511 · doi:10.1108/COMPEL-03-2013-0083
[7] Hammond, P. (1962), ”The calculation of the magnetic field of rotating machines. Part 3: eddy currents induced in a solid slab by a circular current loop”, Proceedings of the IEE - Part C: Monographs, Vol. 109 No. 16, pp. 508-515. · Zbl 1358.78011 · doi:10.1108/COMPEL-03-2013-0083
[8] Kirpo, M. , Tympel, S. , Boeck, T. , Krasnov, D. and Thess, A. (2011), ”Electromagnetic drag on a magnetic dipole near a translating conducting bar”, Journal of Applied Physics, Vol. 109 No. 11. · Zbl 1358.78011 · doi:10.1108/COMPEL-03-2013-0083
[9] Knoepfel, H. (2000), Magnetic Fields: A Comprehensive Theoretical Treatise for Practical Use, Wiley, New York, NY.
[10] Kreyszig, E. (2006), Advanced Engineering Mathematics, Wiley, Hoboken, NJ. · Zbl 0103.27803
[11] Kriezis, E.E. and Xypteras, I.E. (1979), ”Eddy current distribution and loss in a semi-infinite conducting space due to a vertical current loop”, ETZ Arch., Vol. 7, pp. 201-207.
[12] Langerholc, J. (1973), ”Torques and forces on a moving coil due to eddy currents”, J. Appl. Phys., Vol. 44, pp. 1587-1594. , · Zbl 1358.78011 · doi:10.1108/COMPEL-03-2013-0083
[13] Morisue, T. (1982), ”Magnetic vector potential and electric scalar potential in three-dimensional eddy current problem”, IEEE Transaction on Magnetics, Vol. 18, pp. 531-535. , · Zbl 1358.78011 · doi:10.1108/COMPEL-03-2013-0083
[14] Panas, S. and Kriezis, E.E. (1986), ”Eddy current distribution due to a rectangular current frame moving above a conducting slab”, Archiv für Elektrotechnik, Vol. 69 No. 3, pp. 185-191. · Zbl 1358.78011 · doi:10.1108/COMPEL-03-2013-0083
[15] Panas, S. and Papayiannakis, A.G. (1991), ”Eddy currents in an infinite slab due to elliptic current excitation”, IEEE Transactions on Magnetics, September, pp. 4328-4337.
[16] Paul, S. , Bobba, D. , Paudel, N. and Bird, J.Z. (2012), ”Source field modeling in air using magnetic charge sheets”, IEEE Transactions on Magnetics, Vol. 48 No. 11, pp. 3879-3882. , · Zbl 1358.78011 · doi:10.1108/COMPEL-03-2013-0083
[17] Paudel, N. and Bird, J.Z. (2013), ”Modeling the dynamic electromechanical suspension behavior of an electrodynamic eddy current maglev device”, Progress in Electromagnetic Research B, Vol. 49, pp. 1-30. · Zbl 1358.78011 · doi:10.1108/COMPEL-03-2013-0083
[18] Paudel, N. , Paul, S. , Bomela, W. and Bird, J.Z. (2013), ”Dynamic electromechanical eddy current force modeling”, Submitted to COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering.
[19] Rodger, D. , Karaguler, T. and Leonard, P.J. (1989), ”A formulation for 3D moving conductor eddy current problems”, IEEE Transactions on Magnetics, Vol. 25 No. 5, pp. 4147-4149. , · Zbl 1358.78011 · doi:10.1108/COMPEL-03-2013-0083
[20] Sadeghi, S.H.H. and Salemi, A.H. (1996), ”Field distribution due to a current-carrying loop of arbitrary shape above a conducting half-space”, IEEE Transactions on Magnetics, Vol. 32 No. 5, pp. 4344-4346. , · Zbl 1358.78011 · doi:10.1108/COMPEL-03-2013-0083
[21] Sadeghi, S.H.H. and Salemi, A.H. (2001), ”Electromagnetic field distributions around conducting slabs, produced by eddy-current probes with arbitrary shape current-carrying excitation loops”, IEE Proceedings - Science, Measurement and Technology, Vol. 148 No. 4, pp. 187-192. · Zbl 1358.78011 · doi:10.1108/COMPEL-03-2013-0083
[22] Stratton, J.A. (1941), Electromagnetic Theory, McGraw-Hill, New York, NY. · JFM 67.1119.01
[23] Theodoulidis, T. and Bowler, J.R. (2005), ”Eddy-current interaction of a long coil with a slot in a conductive plate”, IEEE Transactions on Magnetics, Vol. 41 No. 4, pp. 1238-1247. , · Zbl 1206.78012 · doi:10.1108/COMPEL-03-2013-0083
[24] Theodoulidis, T. and Bowler, J.R. (2010), ”Interaction of an eddy-current coil with a right-angled conductive wedge”, IEEE Transactions on Magnetics, Vol. 46 No. 4, pp. 1034-1042. , · Zbl 1206.78012 · doi:10.1108/COMPEL-03-2013-0083
[25] Theodoulidis, T.P. and Kriezis, E.E. (2006), Eddy Current Canonical Problems (with Applications to Nondestructive Evaluation), Tech Science Press, Duluth, GA. · Zbl 1122.74002
[26] Tsaknakis, H.J. and Kriezis, E.E. (1985), ”Field distribution owing to a circular current loop placed in an arbitrary position above a conducting plate”, IEEE Transactions on Geoscience and Remote Sensing, Vol. GE-23 No. 6, pp. 834-840. , · Zbl 1358.78011 · doi:10.1108/COMPEL-03-2013-0083
[27] Woolley, I. (1970), ”Eddy current losses in reactive flux shields”, Proceedings of IEE, Vol. 117, pp. 2142-2150.
[28] Zec, M. , Uhlig, R. , Ziolkowski, M. and Brauer, H. (2013), ”Finite element analysis of non-destructive testing eddy current problems with moving parts”, IEEE Transactions on Magnetics, Vol. 49 No. 8, pp. 4785-4794. , · Zbl 1358.78011 · doi:10.1108/COMPEL-03-2013-0083
[29] Rodger, D. , Leonard, P.J. and Karaguler, T. (1990), ”An optimal formulation for 3D moving conductor eddy current problems with smooth rotors”, IEEE Transactions on Magnetics, Vol. 26 No. 5, pp. 2359-2363. , · Zbl 1358.78011 · doi:10.1108/COMPEL-03-2013-0083
[30] Rodger, D. , Allen, N. , Coles, P.C. , Street, S. , Leonard, P.J. and Eastham, J.F. (1994), ”Finite element calculation of forces on a DC magnet moving over an iron rail”, IEEE Transactions on Magnetics, Vol. 30 No. 6, pp. 4680-4682. , · Zbl 1358.78011 · doi:10.1108/COMPEL-03-2013-0083
[31] Xia, Z.P. , Zhu, Z.Q. and Howe, D. (2004), ”Analytical magnetic field analysis of Halbach magnetized permanent-magnet machines”, IEEE Transactions on Magnetics, Vol. 40 No. 4, pp. 1864-1872. , · Zbl 1358.78011 · doi:10.1108/COMPEL-03-2013-0083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.