×

zbMATH — the first resource for mathematics

Powerful nonparametric checks for quantile regression. (English) Zbl 1358.62048
Summary: We propose a new and simple lack-of-fit test for a parametric quantile regression. It involves one-dimensional kernel smoothing, so that the rate at which it detects local alternatives is independent of the number of covariates. The test has asymptotically Gaussian critical values, and wild bootstrap can be applied to obtain more accurate ones in small samples. Our procedure appears to be competitive with existing ones in simulations and in an empirical application with several covariates.

MSC:
62G10 Nonparametric hypothesis testing
62G08 Nonparametric regression and quantile regression
62G07 Density estimation
62G20 Asymptotic properties of nonparametric inference
Software:
quantreg
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Abrevaya, J., The effects of demographics and maternal behavior on the distribution of birth outcomes, Empir. Econom., 26, 247-257, (2001)
[2] Bierens, H. J.; Ginther, D. K., Integrated conditional moment testing of quantile regression models, (Fitzenberger, B.; Koenker, R.; Machado, J. A., Economic Applications of Quantile Regression, Stud. Empir. Econom., vol. 26, (2001), Physica-Verlag HD), 307-324
[3] Bierens, H. J.; Ploberger, W., Asymptotic theory of integrated conditional moment tests, Econometrica, 65, 1129-1151, (1997) · Zbl 0927.62085
[4] Conde-Amboage, M.; Sánchez-Sellero, C.; González-Manteiga, W., A lack-of-fit test for quantile regression models with high-dimensional covariates, Comput. Statist. Data Anal., 88, 128-138, (2015) · Zbl 06921450
[5] Escanciano, J.; Goh, S., Specification analysis of linear quantile models, J. Econometrics, 178, 495-507, (2014) · Zbl 1293.62097
[6] Fan, Y.; Li, Q., Consistent model specification tests: kernel-based tests versus bierens’ ICM tests, Econometric Theory, 16, 1016-1041, (2000) · Zbl 1180.62071
[7] Feng, X.; He, X.; Hu, J., Wild bootstrap for quantile regression, Biometrika, 98, 995-999, (2011) · Zbl 1228.62053
[8] Guerre, E.; Lavergne, P., Optimal minimax rates for nonparametric specification testing in regression models, Econometric Theory, 18, 1139-1171, (2002) · Zbl 1033.62042
[9] Guerre, E.; Lavergne, P., Data-driven rate-optimal specification testing in regression models, Ann. Statist., 33, 840-870, (2005) · Zbl 1068.62055
[10] Hall, P.; Heyde, C. C., Martingale limit theory and its application, (1980), Academic Press, Inc. New York-London, [Harcourt Brace Jovanovich, Publishers] · Zbl 0462.60045
[11] Härdle, W.; Mammen, E., Comparing nonparametric versus parametric regression fits, Ann. Statist., 21, 1926-1947, (1993) · Zbl 0795.62036
[12] Härdle, W.; Marron, J. S., Optimal bandwidth selection in nonparametric regression function estimation, Ann. Statist., 13, 1465-1481, (1985) · Zbl 0594.62043
[13] He, X.; Zhu, L.-X., A lack-of-fit test for quantile regression, J. Amer. Statist. Assoc., 98, 1013-1022, (2003) · Zbl 1043.62039
[14] Horowitz, J. L.; Spokoiny, V. G., An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative, Econometrica, 69, 599-631, (2001) · Zbl 1017.62012
[15] Horowitz, J. L.; Spokoiny, V. G., An adaptive, rate-optimal test of linearity for Median regression models, J. Amer. Statist. Assoc., 97, 822-835, (2002) · Zbl 1048.62050
[16] Koenker, R., (Quantile Regression, Econom. Soc. Monogr., vol. 38, (2005), Cambridge University Press Cambridge) · Zbl 1111.62037
[17] Koenker, R., 2015. Quantreg: Quantile Regression, r package version 5.19.
[18] Koenker, R.; Bassett, J. G., Regression quantiles, Econometrica, 46, 33-50, (1978) · Zbl 0373.62038
[19] Koenker, R.; Hallock, K. F., Quantile regression, J. Econ. Perspect., 15, 143-156, (2001)
[20] Lavergne, P.; Maistre, S.; Patilea, V., A significance test for covariates in nonparametric regression, Electron. J. Stat., 9, 643-678, (2015) · Zbl 1309.62076
[21] Lavergne, P., Patilea, V., 2010. One for all and all for one: Regression checks with many regressors, Discussion Papers dp08-06, Department of Economics, Simon Fraser University.
[22] Lavergne, P.; Patilea, V., One for all and all for one: regression checks with many regressors, J. Bus. Econom. Statist., 30, 41-52, (2012)
[23] Li, Q.; Wang, S., A smple consistent bootstrap test for a parametric regression function, J. Econometrics, 87, 145-165, (1998) · Zbl 0943.62031
[24] Nolan, D.; Pollard, D., \(U\)-processes: rates of convergence, Ann. Statist., 15, 780-799, (1987) · Zbl 0624.60048
[25] Pakes, A.; Pollard, D., Simulation and the asymptotics of optimization estimators, Econometrica, 57, 1027-1057, (1989) · Zbl 0698.62031
[26] Sherman, R. P., Maximal inequalities for degenerate \(U\)-processes with applications to optimization estimators, Ann. Statist., 22, 439-459, (1994) · Zbl 0798.60021
[27] Stute, W., Nonparametric model checks for regression, Ann. Statist., 25, 613-641, (1997) · Zbl 0926.62035
[28] van der Vaart, A. W.; Wellner, J. A., (Weak Convergence and Empirical Processes, Springer Series in Statistics, (1996), Springer-Verlag New York) · Zbl 0862.60002
[29] Yu, K.; Lu, Z.; Stander, J., Quantile regression: applications and current research areas, Statistician, 52, 331-350, (2003)
[30] Zheng, J. X., A consistent nonparametric test of parametric regression models under conditional quantile restrictions, Econometric Theory, 14, 123-138, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.