×

Solution of multilayer diffusion problems via the Laplace transform. (English) Zbl 1358.35052

In the paper, a multilayer diffusion problem is studied using the Laplace transform . Nonhomogeneous outer boundary conditions (BCs) with arbitrary time-varying functions is considered. The paper is organized as follows: Section 1 is an introduction. In Section 2 the mathematical formulation of a multilayer diffusion problem and then its reformulation as a sequence of one-layer diffusion problems with BCs that include arbitrary time-dependent functions are given. A general one-layer problem with time-varying BCs is solved in Section 3. In Section 4 the particular case of the two-layer problem is considered and an illustrative example is given. In Section 5 the authors return to the multilayer diffusion problem in order to use the results of Sections 3 and 4 for finding the solution. Finally, a discussion on the determination of critical times and brief concluding remarks are given in Section 6.

MSC:

35K20 Initial-boundary value problems for second-order parabolic equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abdul Azeez, M. F.; Vakakis, A. F., Axisymmetric transient solutions of the heat diffusion problem in layered composite media, Int. J. Heat Mass Transfer, 43, 20, 3883-3895, (2000) · Zbl 1073.80508
[2] Addicks, W. J.; Flynn, G.; Wiener, N.; Curl, R., A mathematical model to describe drug release from thin topical applications, Int. J. Pharm., 56, 243-248, (1989)
[3] Carr, E. J.; Turner, I. W., A semi-analytical solution for multilayer diffusion in a composite medium consisting of a large number of layers, Appl. Math. Model., (2016)
[4] Caunce, J. F.; Barry, S. I.; Mercer, G. N., A spatially dependent model for washing wool, Appl. Math. Model., 32, 4, 389-404, (2008) · Zbl 1260.76032
[5] de Monte, F., Transient heat conduction in one-dimensional composite slab. A ‘natural’ analytic approach, Int. J. Heat Mass Transfer, 43, 3607-3619, (2000) · Zbl 0964.80003
[6] Haberman, R., Elementary applied partial differential equations: with Fourier series and boundary value problems, (1987), Prentice Hall
[7] Hickson, R. I.; Barry, S. I.; Mercer, G. N., Critical times in multilayer diffusion. part 1: exact solutions, Int. J. Heat Mass Transfer, 52, 5776-5783, (2009) · Zbl 1177.80022
[8] Hickson, R. I.; Barry, S. I.; Sidhu, H. S., Critical times in one- and two-layered diffusion, Australas. J. Eng. Educ., 15, 2, 77-84, (2009)
[9] Liu, C.; Ball, W. P., Analytical modeling of diffusion-limited contamination and decontamination in a two-layer porous medium, Adv. Water Resour., 21, 4, 297-313, (1998)
[10] Liu, G.; Si, B. C., Analytical modeling of one-dimensional diffusion in layered systems with position-dependent diffusion coefficients, Adv. Water Resour., 31, 2, 251-268, (2008)
[11] Liu, G.; Si, B. C., Multi-layer diffusion model and error analysis applied to chamber-based gas fluxes measurements, Agric. For. Meteorol., 149, 1, 169-178, (2009)
[12] McGinty, S.; McKee, S.; Wadsworth, R. M.; McCormick, C., Modelling drug-eluting stents, Math. Med. Biol., 28, 1, 1-29, (2011) · Zbl 1211.92032
[13] Mikhailov, M. D.; Özisik, M. N., Unified analysis and solutions of heat and mass diffusion, (1994), Dover · Zbl 0599.76103
[14] Mikhailov, M. D.; Özisik, M. N.; Vulchanov, N. L., Diffusion in composite layers with automatic solution of the eigenvalue problem, Int. J. Heat Mass Transfer, 26, 8, 1131-1141, (1983) · Zbl 0537.76059
[15] Mitragotri, S.; Anissimov, Y. G.; Bunge, A. L.; Frasch, H. F.; Guy, R. H.; Hadgraft, J.; Kasting, G. B.; Lane, M. E.; Roberts, M. S., Mathematical models of skin permeability, Int. J. Pharm., 418, 1, 115-129, (2011)
[16] Pasupuleti, R.; Wang, Y.; Shabalin, I.; Li, L. Y.; Liu, Z.; Grove, S., Modelling of moisture diffusion in multilayer woven fabric composites, Comput. Mater. Sci., 50, 5, 1675-1680, (2011)
[17] Pontrelli, G.; de Monte, F., Mass diffusion through two-layer porous media: an application to the drug-eluting stent, Int. J. Heat Mass Transfer, 50, 17, 3658-3669, (2007) · Zbl 1113.80013
[18] Sales-Cruz, M. A.; Pérez-Cisneros, E. S.; Ochoa-Tapia, J. A., An analytic solution for the transient diffusion problem in a multi-layer system, Rev. Mex. Ingenier. Química, 1, 57-72, (2002)
[19] Simon, L.; Loney, N. W., An analytical solution for percutaneous drug absorption: application and removal of the vehicle, Math. Biosci., 197, 119-139, (2005) · Zbl 1076.92032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.