Control of multistability. (English) Zbl 1357.34105

Summary: Multistability or coexistence of different attractors for a given set of parameters is one of the most exciting phenomena in dynamical systems. It can be found in different areas of science, such as physics, chemistry, biology, economy, and in nature. The final state of a multistable system depends crucially on the initial conditions. From the viewpoint of applications, there are two major issues related to the emergence of multistability. On one hand, this phenomenon often can create inconvenience, as for instance, in the design of a commercial device with specific characteristics, where multistability needs to be avoided or the desired state has to be stabilized against a noisy environment, and on the other hand, the coexistence of different stable states offers a great flexibility in the system performance without major parameter changes, that can be used with the right control strategies to induce a definite switching between different coexisting states. These two examples alone illustrate the importance of multistability control in applied nonlinear science. For the last decade a lot of research has been devoted to the development of control techniques of multistable systems. These methods cover several strategies, going from feedback control methods to nonfeedback, such as periodic or stochastic perturbations capable of changing the coexisting states stability and driving the system from multistability to monostability. We review the most representative control strategies, discuss their theoretical background and experimental realization.


34H10 Chaos control for problems involving ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37G35 Dynamical aspects of attractors and their bifurcations
78A60 Lasers, masers, optical bistability, nonlinear optics
37L15 Stability problems for infinite-dimensional dissipative dynamical systems
37L30 Attractors and their dimensions, Lyapunov exponents for infinite-dimensional dissipative dynamical systems
Full Text: DOI


[1] Atteneave, F., Multistability in perception, Sci. Am., 225, 63-71, (1971)
[2] Maurer, J.; Libchaber, A., Effect of the Prandtl number on the onset of turbulence in liquid-he-4, J. Phys. Lett. (Paris), 41, L515-L518, (1980)
[3] Giglio, M.; Musazzi, S.; Perini, U., Transition to chaotic behavior via a reproducible of sequence of period-doubling bifurcations, Phys. Rev. Lett., 47, 243-246, (1981)
[4] Arecchi, F. T.; Lisi, F., Hopping mechanism generating 1/f noise in nonlinear systems, Phys. Rev. Lett., 49, 94-97, (1982)
[5] Beasley, M. R.; D’Humieres, D.; Huberman, B. A., Comment on “hopping mechanism generating 1/f noise in nonlinear systems”, Phys. Rev. Lett., 50, 1328-1331, (1983)
[6] Arecchi, F. T.; Meucci, R.; Puccioni, G.; Tredicce, J., Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a \(q\)-switched gas laser, Phys. Rev. Lett., 49, 1217-1220, (1982)
[7] Feudel, U., Complex dynamics in multistable systems, Int. J. Bifurcation Chaos, 18, 1607-1626, (2008)
[8] Goswami, B. K.; Pisarchik, A. N., Controlling multistability by small periodic perturbation, Int. J. Bifurcation Chaos, 18, 1645-1673, (2008)
[9] Brun, E.; Derighetti, B.; Meier, D.; Holzner, R.; Ravani, M., Observation of order and chaos in a nuclear spin-flip laser, J. Opt. Soc. Amer. B Opt. Phys., 2, 156-167, (1985)
[10] Thompson, J. M.T.; Stewart, H. B., Nonlinear dynamics and chaos, (1986), Wiley Chichester · Zbl 0601.58001
[11] Foss, J.; Longtin, A.; Mensour, B.; Milton, J., Multistability and delayed recurrent loops, Phys. Rev. Lett., 76, 708-711, (1996)
[12] Eschenazi, E.; Solari, H. G.; Gilmore, R., Basins of attraction in driven dynamical systems, Phys. Rev. A, 39, 2609-2627, (1989)
[13] Schwartz, J.-L.; Grimault, N.; Hupé, J.-M.; Moore, C. J.B. C.J.; Pressnitzer, D., Multistability in perception: sensory modalities, an overview, Philos. Trans. R. Soc. B, 367, 896-905, (2012)
[14] Kruse, P.; Stadler, M., Ambiguity in mind and nature: multistable cognitive phenomena, (1995), Springer Berlin · Zbl 0882.92033
[15] Hebb, D. O., The organization of behavior, (1949), Wiley New York
[16] Köhler, W.; Wallach, H., Figural after-effects, an investigation of visual processes, Proc. Am. Phil. Soc., 88, 269-357, (1944)
[17] (Alais, D.; Blake, R., Binocular Rivalry, (2005), MIT Press)
[18] Parkkonen, L.; Andersson, J.; Hämäläinen, M.; Hari, R., Early visua brain areas reflect the percept of an ambiguous scene, Proc. Natl. Acad. Sci. USA, 105, 20500-20504, (2008)
[19] Moreno-Bote, R.; Rinzel, J.; Rubin, N., Noise-induced alternations in an attractor network model of perceptual bistability, J. Neurophysiol., 98, 1125-1139, (2007)
[20] Gigante, G.; Mattia, M.; Braun, J.; Del Giudice, P., Bistable perception modeled as competing stochastic integrations at two levels, PLoS Comput. Biol., 5, e1000430, (2009)
[21] (Meyn, S. P.; Tweedie, R. L., Markov Chains and Stochastic Stability, (2008), Cambridge University Press Cambridge) · Zbl 0925.60001
[22] Leopold, D. A.; Wilke, M.; Maier, A.; Logothetis, N. K., Stable perception of visually ambiguous patterns, Nature Neuroscience, 5, 605-609, (2002)
[23] Mamassian, P.; Goutcher, R., Temporal dynamics in bistable perception, J. Vision, 5, 361-375, (2005)
[24] Warren, R. M., Illusory changes of distinct speech upon repetition—the verbal transformation effect, Br. J. Psychol., 52, 249-258, (1961)
[25] (Warren, R. M., Auditory Perception: A New Analysis and Synthesis, (1999), Cambridge University Press Cambridge)
[26] Deutsch, D., The tritone paradox: effects of spectral variables, Percept. Psychophys., 41, 563-575, (1987)
[27] Repp, B. H., Spectral envelope and context effects in the tritone paradox, Perception, 26, 645-665, (1997)
[28] Roberts, M.; Summerfield, Q., Audiovisual presentation demonstrates that selective adaptation in speech perception is purely auditory, Perception and Psychophysics, 30, 309-314, (1981)
[29] Repp, B. H., Hearing a melody in different ways: multistability of metrical interpretation, reflected in rate limits of sensorimotor synchronization, Cognition, 102, 434-454, (2007)
[30] Repp, B. H.; Iversen, J. R.; Patel, A. D., Tracking an imposed beat, Music Percept., 26, 1-18, (2008)
[31] van Ee, R.; van Dam, L. C.; Brouwer, G. J., Voluntary control and the dynamics of percetual bi-stability, Vision Res., 45, 41-55, (2005)
[32] Kohler, A.; Haddad, L.; Singer, W.; Muckli, L., Deciding what to see: the role of intention and attention in the perception of apparent motion, Vision Res., 48, 1096-1106, (2008)
[33] Knorre, W.; Bergter, F.; Simon, Z., Multistability in metabolic systems, Stud. Biophys., 49, 81-89, (1975)
[34] Angeli, D.; Ferrell, J. E.; Sontag, E. D., Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems, Proc. Natl. Acad. Sci. USA, 101, 1822-1827, (2004)
[35] Laurent, M.; Kellershohn, N., Multistability: a major means of differentiation and evolution in biological systems, Trends Biochem. Sci., 24, 418-422, (1999)
[36] Kaneko, K.; Yomo, T., Isologous diversification: a theory of cell differentiation, Bull. Math. Biol., 59, 139-196, (1997) · Zbl 0925.92004
[37] Kaneko, K.; Yomo, T., Sympatric speciation: compliance with phenotype diversification from a single genotype, Bull. Math. Biol., 267, 2367-2373, (2000)
[38] Huang, S.; Eichler, G.; Bar-Yam, Y.; Ingber, D. E., Cell fates as highdimensional attractor states of a complex gene regulatory network, Phys. Rev. Lett., 94, 128701, (2005)
[39] Kaneko, K., Life: an introduction to complex systems biology, vol. 371, (2006), Springer-Verlag Berlin
[40] Ullner, E.; Zaikin, A.; Volkov, E. I.; Garcia-Ojalvo, J., Multistability and clustering in a population of synthetic genetic oscillators via phase-repulsive cell-to-cell communication, Phys. Rev. Lett., 99, 148103, (2007)
[41] Koseska, A.; Volkov, E.; Zaikin, A.; Kurths, J., Inherent multistability in arrays of autoinducer coupled genetic oscillators, Phys. Rev. E, 75, 031916, (2007)
[42] Yuan, Z.; Zhang, J.; Zhou, T., Coherence, collective rhythm, and phase difference distribution in populations of stochastic genetic oscillators with cellular communication, Phys. Rev. E, 78, 031901, (2008)
[43] Ullner, E.; Koseska, A.; Kurths, J.; Volkov, E.; Kantz, H.; Garcia-Ojalvo, J., Multistability of synthetic genetic networks with repressive cell-to-cell communication, Phys. Rev. E, 78, 031904, (2008)
[44] Koseska, A.; Kurths, J., Topological structures enhance the presence of dynamical regimes in synthetic networks, Chaos, 20, 045111, (2010)
[45] Potapov, I.; Zhurov, B.; Volkov, E., Quorum sensing generated multistability and chaos in a synthetic genetic oscillator, Chaos, 22, 023117, (2012) · Zbl 1331.92103
[46] Ferrell, J. E.; Machleder, E. M., The biochemical basis of an all-or-none cell fate switch in xenopus oocytes, Science, 280, 895-898, (1998)
[47] Bagowski, C. P.; Ferrell, J. E., Bistability in the JNK cascade, Curr. Biol., 11, 1176-1182, (2001)
[48] Bhalla, U. S.; Ram, P. T.; Iyengar, R., Map kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network, Science, 297, 1018-1023, (2002)
[49] Cross, F. R.; Archambault, V.; Miller, M.; Klovstad, M., Testing a mathematical model of the yeast cell cycle, Mol. Biol. Cell., 13, 5270, (2003)
[50] Pomerening, J. R.; Sontag, E. D.; Ferrell, J. E., Testing a mathematical model of the yeast cell cycle, Nat. Cell Biol., 5, 346-351, (2003)
[51] Bagowski, C.; Besser, J.; Frey, C. R.; Ferrell, J. E., The JNK cascade as a biochemical switch in Mammalian cells: ultrasensitive and all-or-none responses, Curr. Biol., 13, 315-320, (2003)
[52] Sha, W.; Moore, J.; Chen, K.; Lassaletta, A. D.; Yi, C. S.; Tyson, J. J.; Sible, J. C., Hysteresis drives cell-cycle transitions in xenopus laevis egg extracts, Proc. Natl. Acad. Sci. USA, 100, 975-980, (2003)
[53] Slepchenko, B. M.; Terasaki, M., Bio-switches: what makes them robust?, Curr. Opin. Genet. Dev., 14, 428-434, (2003)
[54] Chung, J. D.; Stephanopoulos, G., On physiological multiplicity and population heterogeneity of biological systems, Chem. Eng. Sci., 51, 1509-1521, (1996)
[55] Ferrell, J. E., Self-perpetuating states in signal transduction: positive feedback, double-negative feedback, and bistability, Curr. Opin. Chem. Biol., 6, 140-148, (2002)
[56] Shiau, Y.-H.; Peng, Y.-F.; Hwang, R. R.; Hu, C.-K., Multistability and symmetry breaking in the two-dimensional flow around a square cylinder, Phys. Rev. E, 60, 6188-6191, (1999)
[57] Ravelet, F.; Marié, L.; Chiffaudel, A.; Daviaud, F., Multistability and memory effect in a highly turbulent flow: experimental evidence for a global bifurcation, Phys. Rev. Lett., 93, 164501, (2004)
[58] Arecchi, F. T.; Badii, R.; Politi, A., Generalized multistability and noise-induced jumps in a nonlinear dynamical system, Phys. Rev. A, 32, 402-408, (1985)
[59] Gibbs, H. M.; McCall, S. L.; Venkatesan, T. N.C., Differential gain and bistability using a sodium-filled Fabry-Perot interferometry, Phys. Rev. Lett., 19, 1135-1138, (1976)
[60] Baer, T., Large-amplitude fluctuations due to longitudinal mode coupling in diode-laser pumped intracavity-doubled nd:YAG lasers, J. Opt. Soc. Amer. B Opt. Phys., 3, 1175-1180, (1986)
[61] de Jagher, P. C.; van der Graaf, W. A.; Lenstra, D., Relaxation-oscillation phenomena in an injection-locked semiconductor laser, Quant. Semiclass. Opt., 8, 805-822, (1996)
[62] Gavrielides, A.; Kovanis, V.; Varangis, P. M.; Erneux, T.; Lythez, G., Coexisting periodic attractors in injection-locked diode lasers, Quant. Semiclass. Opt., 9, 785-796, (1997)
[63] Pisarchik, A. N.; Barmenkov, Yu. O.; Kir’yanov, A. V., Experimental characterization of bifurcation structure in an erbium-doped fiber laser with pump modulation, IEEE J. Quantum. Electron., 39, 1567-1571, (2003)
[64] Saucedo-Solorio, J. M.; Pisarchik, A. N.; Kir’yanov, A. V.; Aboites, V., Generalized multistability in a fiber laser with modulated losses, J. Opt. Soc. Am. B., 20, 490-496, (2003)
[65] Brambilla, M.; Lugiato, L. A.; Penna, V.; Prati, F.; Tamm, C.; Weiss, C., Transverse laser patters. II. variational principle for pattern selection, spatial multistability and laser hydrodynamics, Phys. Rev. A, 43, 5114-5120, (1991)
[66] Pampaloni, E.; Residori, S.; Soria, S.; Arecchi, F. T., Phase-locking in nonlinear optical patterns, Phys. Rev. Lett., 78, 1042-1045, (1997)
[67] Brambilla, M.; Lugiato, L. A.; Pinna, M.; Prati, F.; Pagani, P.; Vanotti, V.; Li, M.; Weiss, C., The laser as nonlinear element for an optical associative memory, Opt. Commun., 92, 145-164, (1992)
[68] Kastrup, J.; Grahn, H.; Ploog, K.; Prengel, F.; Wacker, A.; Schöll, E., Multistability of the current-voltage characteristics in doped gaas-alas superlattices, Appl. Phys. Lett., 65, 1808-1810, (1994)
[69] Prengel, F.; Wacker, A.; Schöll, E., Simple model for multistability and domain formation in semiconductor superlattices, Phys. Rev. B, 50, 1705-1712, (1994)
[70] Bonilla, L. L.; Escobedo, R.; Dell’Acqua, G., Voltage switching and domain relocation in semiconductor superlattices, Phys. Rev. B, 73, 115341-115353, (2006)
[71] Aguado, R.; Platero, G., Photo-induced multistable phenomena in the tunneling current through doped superlattices, Phys. Rev. Lett., 81, 4971-4974, (1998)
[72] Hirschinger, J.; Eberle, W.; Prettl, W.; Niedernostheide, F.-J.; Kostial, H., Self-organized current-density patterns and bifurcations in n-gaas with a circular symmetry of contacts, Phys. Lett. A, 236, 249-255, (1997)
[73] Schwarz, G.; Lehmann, C.; Schöll, E., Self-organized symmetry-breaking current filamentation and multistability in corbino disks, Phys. Rev. B, 61, 10194-10200, (2000)
[74] Teich, W. G.; Mahler, G., Optically controlled multistability in nanostructures semiconductors, Phys. Scr., 40, 688-693, (1989)
[75] Hudson, I.; Mankin, J., Chaos in the Belousov-Zhabotinskii reaction, J. Chem. Phys., 74, 6171-6177, (1981)
[76] Simonyi, R.; Wolf, A.; Swinney, H., One-dimensional dynamics in a multi-component chemical reaction, Phys. Rev. Lett., 49, 245-248, (1982)
[77] Wang, J.; Sorensen, P.; Hymne, F., Transient period doublings, torus oscillations, and chaos in a closed chemical system, J. Chem. Phys., 98, 725-727, (1994)
[78] Ganapathisubramanian, N.; Showalter, K., Bistability, mushrooms, and isolas, J. Chem. Phys., 80, 4177-4184, (1984)
[79] Marmillot, P.; Kaufman, M.; Hervagault, J.-F., Multiple steady states and dissipative structures in a circular and linear array of three cells: numerical and experimental approaches, J. Chem. Phys., 95, 1206-1214, (1991)
[80] Laplante, J. P.; Erneux, T., Propagation failure and multiple steady-states in an array of diffusion coupled flow reactors, Physica A, 188, 89-98, (1992)
[81] Orban, M.; Epstein, I., Systematic design of chemical oscillators. part 13. complex periodic and aperiodic oscillation in the chlorite thiosulfate reaction, J. Phys. Chem., 86, 3907-3910, (1982)
[82] Nagypal, I.; Epstein, I., Systematic design of chemical oscillators. 37. fluctuations and stirring rate effects in the chlorite thiosulfate reaction, J. Phys. Chem., 90, 6285-6292, (1986)
[83] Sun, H.; Scott, S.; Showalter, K., Uncertain destination dynamics, Phys. Rev. E, 60, 3876-3880, (1999)
[84] Turing, A. M., The chemical basis of morfogenesis, Philos. Trans. R. Soc. Lond. B Biol. Sci., 237, 37-72, (1952)
[85] Yang, L.; Dolnik, M.; Zhabotinsky, A. M.; Epstein, I. R., Turing patters beyond hexagons and stripes, Chaos, 16, 037114, (2006)
[86] May, R., Thresholds and breakpoints in ecosystems with a multiplicity of stable states, Nature, 269, 471-477, (1977)
[87] Groffman, P. M.; Baron, J. S.; Blett, T.; Gold, A. J.; Goodman, I.; Gunderson, L. H., Ecological thresholds: the key to successful environmental management or an important concept with no practical application?, Ecosystems, 269, 1-13, (2006)
[88] Knowlton, N., Thresholds and multiple stable states in coral-reef community dynamics, Amer. Zool., 32, 674-682, (1992)
[89] Hoegh-Guldberg, O.; Mumby, P. J.; Steneck, R. S.; Greenfield, P.; Gomez, E., Coral reefs under rapid climate change and Ocean acidification, Science, 318, 1737-1742, (2007)
[90] Brovkin, V.; Claussen, M.; Petoukhov, V.; Ganopolski, A., On the stability of the atmosphere-vegetation system in the sahara/sahel region, J. Geophys. Res., 103, 31613-31624, (1998)
[91] Scheffer, M.; Carpenter, S.; Foley, J.; Folke, C.; Walker, B., Catastrophic shifts in ecosystems, Nature, 413, 31613-31624, (2001)
[92] Rietkerk, M.; Dekker, S. F.; de Ruiter, P. C.; van de Koppel, J., Self-organized patchiness and catastrophic shifts in ecosystems, Science, 305, 1926-1929, (2004)
[93] van Nes, E. H.; Scheffer, M., Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift, Amer. Nat., 169, 738-747, (2007)
[94] Huisman, J.; Weissing, F., Fundamental unpredictability in multispecies competition, Amer. Nat., 157, 171-187, (2001)
[95] Baurmann, M.; Feudel, U., Turing patterns in a simple model of a nutrient-microorganism system in the sediment, Ecol. Complex., 1, 77-94, (2004)
[96] Meron, E.; Gilad, E.; von Hardenberg, J.; Shachak, M.; Zarmi, Y., Vegetation patterns along a rainfall gradient, Chaos, Solitons Fractals, 19, 367-376, (2004) · Zbl 1083.92039
[97] Kéfi, S.; Eppinga, M. B.; de Ruiter, P. C.; Rietkerk, M., Bistability and regular spatial patterns in arid ecosystems, Theor. Ecol., 3, 257-269, (2010)
[98] Hertz, J.; Krogh, A.; Palmer, R., Introduction to the theory of neural computation, (1991), Addison-Wesley New York
[99] Canavier, C.; Baxter, D.; Clark, J.; Byrne, J., Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity, J. Neurophysiol., 69, 2252-2257, (1993)
[100] Canavier, C. C.; Baxter, D. A.; Clark, J. W.; Byrne, J. H., Multiple modes of activity in a model neuron suggest a novel mechanism for the effects of neuromodulators, J. Neurophysiol., 72, 872-882, (1994)
[101] Kim, S.; Park, S. H.; Ryu, C. S., Multistability in coupled oscillator systems with time delay, Phys. Rev. Lett., 79, 2911-2914, (1997)
[102] Park, S. H.; Kim, S.; Pyo, H.-B.; Lee, S., Multistability analysis of phase locking patterns in an excitatory coupled neural system, Phys. Rev. E, 60, 2177-2181, (1999)
[103] Foss, J.; Milton, J., Multistability in recurrent neural loops arising from delay, J. Neurophysiol., 84, 975-985, (2000)
[104] Braun, J.; Mattia, M., Attractors and noise: twin drivers of decisions and multistability, NeuroImage, 52, 740-751, (2010)
[105] Foss, J.; Moss, F.; Milton, J., Noise, multistability, and delayed recurrent loops, Phys. Rev. E, 55, 4536-4543, (1997)
[106] Roxin, A.; Brunel, N.; Hansel, D., Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks, Phys. Rev. Lett., 94, 238103, (2005)
[107] Yi, Z.; Tan, K. K.; Lee, T. H., Multistability analysis for recurrent neural networks with unsaturating piecewise linear transfer functions, Neural Comput., 15, 639-662, (2003) · Zbl 1085.68142
[108] Safonov, L. A.; Yamamoto, Y., Noise-driven switching between limit cycles and adaptability in a small-dimensional excitable network with balanced coupling, Neural Comput., 73, 031914, (2006)
[109] Gammaitoni, L.; Hänggi, P.; Jung, P.; Marchesoni, F., Stochastic resonance, Rev. Modern Phys., 78, 775-778, (2006)
[110] Pikovsky, A. S.; Kurths, J., Coherence resonance in a noise-driven excitable system, Phys. Rev. Lett., 78, 775-778, (1997) · Zbl 0961.70506
[111] Newman, J. P.; Butera, R. J., Mechanism, dyanamics and biological existence of multistability in a large class of bursting neurons, Chaos, 20, 023118, (2010) · Zbl 1311.92020
[112] Wolf, F., Symmetry, multistability, and long-range interactions in brain development, Phys. Rev. Lett., 95, 208701, (2003)
[113] Paillard, D., The timing of pleistocene glaciations from a simple multiple-state climate model, Nature, 391, 208701, (1998)
[114] Palmer, T. N., A nonlinear dynamical perspective on climate prediction, J. Clim., 12, 575-591, (1998)
[115] Calov, R.; Ganopolski, A., Multistability and hysteresis in the climate-cryosphere system under orbital forcing, Res. Lett., 12, L21717, (2005)
[116] Bathiany, S.; Claussen, M.; Fraedrich, K., Implications of climate variability for the detection of multiple equilibria and for rapid transitions in the atmosphere-vegetation system, Clim. Dynam., 38, 1775-1790, (2012)
[117] Sr, J.; Rial, R. P.; Beniston, M.; Claussen, M.; Canadell, J.; Cox, P.; Held, H.; de Noblet Ducoudré, N.; Prinn, R.; Reynolds, J.; Salas, J., Nonlinearities, feedbacks and critical thresholds within the earth’s climate system, Clim. Dynam., 65, 11-38, (2004)
[118] Lenton, T. M.; Held, H.; Kriegler, E.; Hall, J. W.; Lucht, W.; Rahmstorf, S.; Schellnhuber, H. J., Tipping elements in the earth’s climate system, PNAS (USA), 105, 1786-1793, (2008) · Zbl 1215.86004
[119] Lenderink, G.; Haarsma, R., Variability and multiple equilibria of the thermohaline circulation associated with deep-water formation, J. Phys. Oceanogr., 24, 1480-1493, (1994)
[120] Rahmstorf, S., Multiple convection patterns and thermohaline flow in an idealized OGCM, J. Clim., 8, 3028-3039, (1995)
[121] Kuhlbrodt, T.; Titz, S.; Feudel, U.; Rahmstorf, S., A simple model of seasonal open Ocean convection. part II: labrador sea stability and stochastic forcing, Ocean Dyn., 52, 36-49, (2001)
[122] Kurgansky, M. V.; Dethloff, K.; Pisnichenko, I. A.; Gernandt, H.; Chmilevsky, F.-M.; Jansen, W., Long-term climate variability in a simple, nonlinear atmospheric model, J. Geophys. Res. (Atmosphere), 101, 4299-4314, (1996)
[123] Crowley, T. J.; Baum, S. K., Is the greenland ice sheet bistable?, Paleoceanography, 10, 357-363, (1995)
[124] Robinson, A.; Calov, R.; Ganopolski, A., Multistability and critical thresholds of the greenland ice sheet, Nature Clim. Change, 2, 429-432, (2012)
[125] Marotzke, J.; Welander, P.; Willebrand, J., Instability and multiple steady states in a meridional-plane model of the thermohaline circulation, Tellus, 40A, 162-172, (1988)
[126] Marotzke, J.; Willebrand, J., Multiple equilibria of the global thermohaline circulation, J. Phys. Oceanogr., 21, 1372-1385, (1991)
[127] Ashkenazy, Y.; Tziperman, E., A wind-induced thermohaline circulation hysteresis and millennial variability regimes, J. Phys. Oceanogr., 37, 2446-2457, (2007)
[128] Hawkins, E.; Smith, R. S.; Allison, L. C.; Gregory, J. M.; Woollings, T. J.; Pohlmann, H.; de Cuevas, B., Bistability of the atlantic overturning circulation in a global climate model and links to Ocean freshwater transport, Geophys. Res. Lett., 38, L10605, (2011)
[129] Power, S. B.; Kleeman, R., Multiple equilibria in a global Ocean general circulation model, J. Phys. Oceanography, 23, 1670-1681, (1994)
[130] Xie, J.; Sreenivasan, S.; Korniss, G.; Zhang, W.; Lim, C.; Szymanski, B. K., Social consensus through the influence of committed minorities, Phys. Rev. E, 71, 011130, (2011)
[131] Castello, X.; Baronchelli, A.; Loreto, V., Consensus and ordering in language dynamics, Eur. Phys. J. B, 71, 557-564, (2009) · Zbl 1188.91142
[132] Ehrhardt, G. C.M. A.; Marsili, M.; Vega-Redondo, F., Phenomenological models of socioeconomic network dynamics, Phys. Rev. E, 74, 036106, (2006)
[133] Sneppen, K.; Mitarai, N., Multistability with a metastable mixed state, Phys. Rev. Lett., 109, 100602, (2012)
[134] Lieberman, M. A.; Tsang, K. Y., Transient chaos in dissipatively perturbed, near-integrable Hamiltonian systems, Phys. Rev. Lett., 55, 908-911, (1985)
[135] Feudel, U.; Grebogi, C.; Hunt, B. R.; Yorke, J. A., Map with more than 100 coexisting low-period periodic attractors, Phys. Rev. E., 54, 71-81, (1996)
[136] Feudel, U.; Grebogi, C., Why are chaotic attractors rare in multistable systems?, Phys. Rev. Lett., 91, 134102, (2003)
[137] Rech, P.; Beims, M.; Gallas, J., Basin size evolution between dissipative and conservative limits, Phys. Rev. E, 71, 017202, (2006)
[138] Poon, L.; Grebogi, C., Controlling complexity, Phys. Rev. Lett., 75, 4023-4026, (1995)
[139] Feudel, U.; Grebogi, C., Multistability and the control of complexity, Chaos, 7, 597-603, (1997) · Zbl 0933.37032
[140] Kraut, S.; Feudel, U.; Grebogi, C., Preference of attractors in noisy multistable systems, Phys. Rev. E, 59, 5253-5260, (1999)
[141] Kraut, S.; Feudel, U., Enhancement of noise-induced escape through the existence of a chaotic saddle, Phys. Rev. E, 67, 015204(R), (2003)
[142] Blazejczyk-Okolewska, B.; Kapitaniak, T., Co-existing attractors of impact oscillator, Chaos Solitons Fractals, 9, 1439-1443, (1998) · Zbl 0942.37040
[143] Mário de Freitas, S. T.; Viana, R. L.; Grebogi, C., Basins of attraction of periodic oscillations in suspension bridges, Nonlinear Dynam., 37, 207-226, (2004) · Zbl 1081.74519
[144] Weigel, R.; Atlee Jackson, E., Multistability and the control of complexity, Int. J. Bifurcation Chaos, 8, 173-178, (1998) · Zbl 0925.93349
[145] Kaneko, K., Dominance of Milnor attractors and noise-induced selection in a multiattractor system, Phys. Rev. Lett., 78, 2736-2739, (1997)
[146] Gavrilov, N. K.; Silnikov, L. P., On three dimensional dynamical systems close to systems with structurally unstable homoclinic curve. I, Math. USSR Sbornik, 17, 467-485, (1972) · Zbl 0255.58006
[147] Newhouse, S., Non density of axiom A(a) on S2, Proc. A. M. S. Symp. Pure Mat., 14, 191-202, (1970)
[148] Newhouse, S., Diffeomorphisms with infinitely many sinks, Topology, 13, 9-18, (1974) · Zbl 0275.58016
[149] Newhouse, S., The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. Inst. Hautes Études Sci., 50, 101-151, (1979) · Zbl 0445.58022
[150] Palis, J.; Viana, M., High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. of Math., 140, 207-250, (1994) · Zbl 0817.58004
[151] Gambaudo, J. M.; Tresser, C., Simple models for bifurcations creating horseshoes, J. Stat. Phys., 32, 455-476, (1983) · Zbl 0587.58034
[152] Wang, X.-J., The newhouse set has a positive Hausdorff dimension, Comm. Math. Phys., 131, 317-332, (1990) · Zbl 0708.58017
[153] Colli, E., Coexistence of infinitely many strange attractors. technical report IMPA report F-086/96, ann. de l’ institut Henri poincare, (1996)
[154] Goswami, B., Multiple attractors in the self-similar bifurcation-structure, Riv. Nuovo Cimento, 23, 1-115, (2005)
[155] Goswami, B., Newhouse sinks in the self-similar bifurcation structure, Phys. Rev. E, 62, 2068-2077, (2000)
[156] Goswami, B.; Basu, S., Self-similar organization of gavrilov-shilnikov-newhouse sinks, Phys. Rev. E, 62, 036210, (2002)
[157] Carvalho, R.; Fernandez, B.; Mendes, R. V., From synchronization to multistability in two coupled quadratic mapss, Phys. Lett. A, 285, 327-338, (2001) · Zbl 0969.37516
[158] Astakhov, V.; Shabunin, A.; Uhm, W.; Kim, S., Multistability formation and synchronization loss in coupled Hénon maps: two sides of the single bifurcational mechanism, Phys. Rev. E, 63, 056212, (2001)
[159] Sausedo-Solorio, J. M.; Pisarchik, A. N., Dynamics of unidirectionally coupled Hénon maps, Phys. Lett. A, 375, 3677-3681, (2011) · Zbl 1252.37027
[160] Campos-Mejia, A.; Pisarchik, A. N.; Arroyo-Almanza, D. A., Noise-induced on-off intermittency in mutually coupled semiconductor lasers, Chaos, Solitons Fractals, 54, 96-100, (2013)
[161] Pikovsky, A.; Popovych, O.; Maistrenko, Y., Resolving clusters in chaotic ensembles of globally coupled identical oscillators, Phys. Rev. Lett., 87, 044102, (2001)
[162] Osipov, S.; Sushchik, M., Synchronized clusters and multistability in arrays of oscillators with different natural frequencies, Phys. Rev. Lett., 58, 7198-7207, (1998)
[163] Wiesenfeld, K.; Hadley, P., Attractor crowding in oscillator array, Phys. Rev. Lett., 62, 1335-1338, (1989)
[164] Kaneko, K., Clustering, coding, switching, hierarchical ordering, and control in network of chaotic elements, Physica D, 41, 137-172, (1990) · Zbl 0709.58520
[165] Astakhov, V. V.; Bezruchko, B. P.; Erastova, E. N.; Seleznev, E. P., Oscillation types and their evolution in dissipatively coupled Feigenbaum systems, Sov. Phys. Tech. Phys., Zh. Tekh. Fiz., 60, 19-26, (1990)
[166] Shabunin, A.; Feudel, U.; Astakhov, V., Phase multistability and phase synchronization in an array of locally coupled period-doubling oscillators, Phys. Rev. E, 80, 026211, (2009)
[167] Vadivasova, T. E.; Sosnovtseva, O. V.; Balanov, A. G.; Astakhov, V., Phase multistability of synchronous chaotic oscillations, Discrete Dyn. Nat. Soc., 4, 231-243, (2000) · Zbl 0983.37037
[168] Rasmussen, J.; Mosekilde, E.; Reick, C., Bifurcations in two coupled Rössler systems, Math. Comput. Simul., 40, 247-270, (1996)
[169] Ikeda, K., Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system, Opt. Commun., 39, 257-261, (1979)
[170] Ikeda, K., High-dimensional chaotic behavior in systems with time-delayed feedback, Physica D, 29, 223-235, (1987) · Zbl 0626.58014
[171] Gibbs, H. M.; Hopf, F. A.; Kaplan, D. L.; Shoemaker, R. L., Observation of chaos in optical bistability, Phys. Rev. Lett., 46, 474-477, (1981)
[172] Aida, T.; Davis, P., Synchronization of chaotic mode hopping in dbr lasers with delayed opto-electric feedback, IEEE J. Quantum Electron., 28, 686-699, (1992)
[173] Ikeda, K.; Kondo, K., Successive higher-harmonic bifurcations in systems with delayed feedback, Phys. Rev. Lett., 49, 1467-1470, (1982)
[174] Balanov, A.; Janson, N.; Schöll, E., Delayed feedback control of chaos: bifurcation analysis, Phys. Rev. E, 71, 016222, (2005)
[175] Losson, J.; Mackey, M. C.; Longtin, A., Solution multistability in first-order nonlinear differential delay equations, Chaos, 3, 167-176, (1993) · Zbl 1055.34510
[176] Martínez-Zérega, B. E.; Pisarchik, A. N.; Tsimring, L., Using periodic modulation to control coexisting attractors induced by delayed feedback, Phys. Lett. A, 318, 102-111, (2003) · Zbl 1098.37511
[177] Xia, G.-Q.; Chan, S.-C.; Liu, J.-M., Multistability in a semiconductor laser with optoelectronic feedback, Optics Express, 15, 572-576, (2007)
[178] Martínez-Zérega, B. E.; Pisarchik, A. N., Efficiency of the control of coexisting attractors by harmonic modulation applied in different ways, Phys. Lett. A, 340, 212-219, (2005) · Zbl 1145.37311
[179] Martínez-Zérega, B. E.; Pisarchik, A. N., Stochastic control of attractor preference in multistable systems, Commun. Nonlinear Sci. Numer. Simul., 17, 4023-4028, (2012) · Zbl 1248.93154
[180] Zanette, D. H., Propagating structures in globally coupled systems with time delays, Phys. Rev. E, 62, 3167-3172, (2000)
[181] Lai, Y.-C.; Grebogi, C., Complexity in Hamiltonian-driven dissipative chaotic dynamical systems, Phys. Rev. E, 54, 4667-4675, (1996)
[182] Ngonghala, C. N.; Feudel, U.; Showalter, K., Extreme multistability in a chemical model system, Phys. Rev. E, 83, 056206, (2011)
[183] Wang, J.; Sun, H.; Scott, S. K.; Showalter, K., Uncertain dynamics in nonlinear chemical reactions, Phys. Chem. Chem. Phys., 5, 5444-5447, (2003)
[184] Hens, C. R.; Banerjee, R.; Feudel, U.; Dana, S. K., How to obtain extreme multistability in coupled dynamical systems, Phys. Rev. E, 85, 035202(R), (2012)
[185] Sanju; Varma, V. S., Quadratic map modulated by additive periodic forcing, Phys. Rev. E, 48, 1670-1675, (1993)
[186] Davies, H. G.; Rangavajhula, K., A period-doubling bifurcation with slow parametric variation and additive noise, Proc. R. Soc. Lond. Ser. A, 457, 2965-2982, (2001) · Zbl 1097.37503
[187] Pisarchik, A. N., Dynamical tracking of unstable periodic orbits, Phys. Lett. A, 242, 152-162, (1998) · Zbl 0944.37050
[188] Pisarchik, A. N.; Kuntsevich, B. F.; Corbalán, R., Stabilizing unstable orbits by slow modulation of a control parameter in a dissipative dynamic system, Phys. Rev. E, 57, 4046-4053, (1998)
[189] Pisarchik, A. N.; Corbalán, R.; Chizhevsky, V. N.; Vilaseca, R.; Kuntsevich, B. F., Dynamic stabilization of unstable perodic orbits in a CO_{2} laser by slow modulation of cavity detuning, J. Bifurcation. Chaos, 8, 1783-1789, (1998)
[190] Chizhevsky, V. N.; Corbalán, R.; Pisarchik, A. N., Attractor splitting induced by resonant perturbations, Phys. Rev. E, 56, 1580-1584, (1997)
[191] Chizhevsky, V. N.; Vilaseca, R.; Corbalán, R., Experimental switchings in bistability domains induced by resonant perturbations, Int. J. Bifurcation Chaos, 8, 1777-1782, (1998)
[192] Newell, T. C.; Gavrielides, A.; Kovanis, V.; Sukow, D.; Erneux, T.; Glasgow, S. A., Unfolding of the period-two bifurcation in a fiber laser pumped with two modulation tones, Phys. Rev. E, 56, 7223-7231, (1997)
[193] Chizhevsky, V. N., Multistability in dynamical systems induced by weak periodic perturbations, Phys. Rev. E, 64, 036223, (2001)
[194] Oppo, G. L.; Politi, A., Toda potential in laser equations, Z. Phys. B: Condens. Matter, 59, 111-115, (1985)
[195] Buceta, J.; Lindenberg, K., Comprehensive study of phase transitions in relaxational systems with field-dependent coefficients, Phys. Rev. E, 69, 011102, (2004)
[196] Wood, K.; Buceta, J.; Lindenberg, K., Comprehensive study of pattern formation in relaxational systems, Phys. Rev. E, 73, 022101, (2006)
[197] Pershin, Y. V.; Di Ventra, M., Memory effects in complex materials and nanoscale systems, Adv. Phys., 60, 145-227, (2011)
[198] Stotland, A.; Di Ventra, M., Stochastic memory: memory enhancement due to noise, Phys. Rev. E, 85, 011116, (2012)
[199] Grebogi, C.; Ott, E.; Yorke, J. A., Basin boundary metamorphoses: changes in accessible boundary orbits, Physica D, 24, 243-262, (1987) · Zbl 0613.58018
[200] Kapitaniak, T.; Maistrenko, Yu., Multiple choice bifurcations as a source of unpredictability in dynamical systems, Phys. Rev. E, 58, 5161-5163, (1998)
[201] Pyragas, K.; Lange, F.; Letz, T.; Parisi, J.; Kittel, A., Stabilization of an unstable steady state in intracavity frequency-doubled lasers, Phys. Rev. E, 61, 3721-3731, (2000)
[202] Reategui, R. J.; Kir’yanov, A. V.; Pisarchik, A. N.; Barmenkov, Y. O.; Il’ichev, N. N., Experimental study and modeling of coexisting attractors and bifurcations in an erbium-doped fiber laser with diode-pump modulation, Laser Phys., 14, 1277-1281, (2004)
[203] Lauterborn, W.; Steinhoff, R., Bifurcation structure of a laser with pump modulation, J. Opt. Soc. Amer. B Opt. Phys., 5, 1097-1104, (1988)
[204] Hohl, A.; Van der Linden, H. J.C.; Roy, R., Scalling laws for dynamical hysteresis in a multidimensional laser system, Phys. Rev. Lett., 74, 2220-2223, (1996)
[205] Wieczorek, S.; Krauskopf, B.; Lenstra, D., Mechanisms for multistability in a semiconductor laser with optical injection, Opt. Commun., 183, 215-226, (2000)
[206] Ruiz-Oliveras, F. R.; Pisarchik, A. N., Synchronization of semiconductor lasers with coexisting attractors, Phys. Rev. E, 79, 016202, (2009)
[207] Guevara, M. R.; Glass, L.; Shrier, A., Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells, Science, 214, 1350-1353, (1981)
[208] Yehia, A. R.; Jeandupeux, D.; Alonso, F.; Guevara, M. R., Hysteresis and bistability in the direct transition from 1:1 to 2:1 rhythm in periodically driven single ventricular cells, Chaos, 9, 916-931, (1999) · Zbl 1056.92510
[209] Ott, E.; Grebogi, C.; Yorke, J. A., Controlling chaos, Phys. Rev. Lett., 64, 1196-1199, (1990) · Zbl 0964.37501
[210] Carroll, T.; Triandaf, I.; Schwartz, I.; Pecora, L., Tracking unstable orbits in an experiment, Phys. Rev. A, 46, 6189-6192, (1992)
[211] Christini, D. J.; Collins, J. J., Using chaos control and tracking to suppress a pathological nonchaotic rhythm in a cardiac model, Phys. Rev. E, 53, R49-R52, (1996)
[212] Kline, R. P.; Baker, B. M., A dynamical systems approach to membrane phenomena underlying cardiac arrhythmias, Int. J. Bifurcation Chaos, 5, 75-88, (1995) · Zbl 0888.92015
[213] Kuntsevich, B. F.; Pisarchik, A. N.; Chizhevsky, V. N.; Churakov, V. V., Amplitude modulation of the radiation of a CO_{2} laser by optically controlled absorption in semiconductors, J. Appl. Spectr., Zhurnal Prikladnoi Spektroskopii, 38, 126-133, (1983), Translated from
[214] Chizhevsky, V. N.; Turovets, S. I., Small signal amplification and classical squeezing near period-doubling bifurcations in a modulated CO_{2}-laser, Opt. Commun., 102, 175-182, (1993)
[215] Li, E., Chromatin modification and epigenetic reprogramming in Mammalian development, Nat. Rev. Genet., 3, 662-673, (2002)
[216] Gardner, T. S.; Cantor, C. R.; Collins, J. J., Construction of a genetic toggle switch in Escherichia coli, Nature, 403, 324-339, (2000)
[217] Ozbudak, E. M.; Thattai, M.; Lim, H. N.; Shraiman, B. I.; van Oudenaarden, A., Multistability in the lactose utilization network of Escherichia coli, Nature, 427, 737-740, (2004)
[218] Thomas, R. D., Biological feedback, (1990), CRC Press Boca Raton, FL · Zbl 0743.92003
[219] Cherry, J. L.; Adler, F. R., How to make a biological switch, J. Theoret. Biol., 203, 117-133, (2000)
[220] Becskei, A.; Seraphin, B.; Serrano, L., Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion, Embo J., 20, 2528-2535, (2001)
[221] Acar, M.; Becskei, A.; van Oudenaarden, A., Enhancement of cellular memory by reducing stochastic transitions, Nature, 435, 228-232, (2005)
[222] Kashiwagi, A.; Urabe, I.; Kaneko, K.; Yomo, T., Adaptive response of a gene network to environmental changes by fitness-induced attractor selection, PLoS ONE, 1, e49, (2006)
[223] Huisman, J.; Weissing, F., Biodiversity of plankton by species oscillations and chaos, Nature, 402, 407-410, (1999)
[224] Kaneko, K., Chaotic but regular posi-nega switch among coded attractors by cluster size variation, Phys. Rev. Lett., 63, 219-223, (1989)
[225] Samson, A. M.; Turovets, S. I.; Chizhevskii, V. N.; Churakov, V. V., Nonlinear dynamics of a loss-switched CO_{2} laser, Sov. Phys.—JETP, 74, 628-639, (1992), Zh. Eksp. Teor. Fiz. 101 (1992) 1177-1188
[226] Chizhevsky, V. N.; Turovets, S. I., Periodically loss-modulated CO_{2} laser as an optical amplitude and phase multitrigger, Phys. Rev. A, 50, 1840-1843, (1994)
[227] Chizhevsky, V. N.; Grigorieva, E. V.; Kashchenko, S. A., Optimal timing for targeting periodic orbits in a loss-driven CO_{2} laser, Opt. Commun., 133, 189-195, (1997)
[228] Chizhevsky, V. N., Coexisting attractors in a CO_{2} laser with modulated losses, J. Opt. B: Quantum Semiclass. Opt, 2, 711-717, (2000)
[229] Chizhevsky, V. N.; Glorieux, P., Targeting unstable periodic orbits, Phys. Rev. E, 51, R2701-R2704, (1995)
[230] Andronov, A. A.; Chaikin, S. E., Theory of oscillations, (1949), Princeton University Press Princeton, NJ
[231] Hayashi, C., Theory of oscillations, (1964), Princeton University Press Princeton, NJ · Zbl 0192.50605
[232] Guckenheimer, J.; Holmes, P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, (1983), Springer-Verlag New York · Zbl 0515.34001
[233] Pecora, L. M.; Carroll, T. L., Pseudoperiodic driving: eliminating multiple domain of attraction using chaos, Phys. Rev. Lett., 67, 945-948, (1991) · Zbl 0990.37504
[234] Carroll, T. L.; Pecora, L. M., Using chaos to keep period-multiplied systems in phase, Phys. Rev. E, 48, 2426-2436, (1993)
[235] Arecchi, F. T.; Badii, R.; Politi, A., Scaling of first passage times for noise induced crises, Phys. Lett. A, 103, 3-7, (1990)
[236] Kapitaniak, T., Chaos in systems with noise, (1990), World Scientific Singapore · Zbl 0761.60001
[237] Sommerer, J. C.; Ditto, W. L.; Grebogi, C.; Ott, E.; Spano, M. L., Experimental confirmation of the scaling theory for noise-induced crises, Phys. Rev. Lett., 66, 1947-1950, (1991)
[238] Kornadt, O.; Linz, S. J.; Lücke, M., Ricker model: influence of periodic and stochastic parametric modulation, Phys. Rev. A, 44, 940-955, (1991)
[239] Yang, W.; Ding, M.; Gang, H., Trajectory (phase) selection in multistable systems: stochastic resonance, signal bias, and the effect of signal phase, Phys. Rev. Lett., 74, 3955-3958, (1995)
[240] Pisarchik, A. N.; Goswami, B. K., Annihilation of one of the coexisting attractors in a bistable system, Phys. Rev. Lett., 84, 1423-1426, (2000)
[241] Pisarchik, A. N., Controlling the multistability of nonlinear systems with coexisting attractors, Phys. Rev. E, 64, 046203, (2001)
[242] Goswami, B. K.; Euzzor, S.; Al Naimee, K.; Geltrude, A.; Meucci, R.; Arecchi, F. T., Control of stochastic multistable systems: experimental demonstration, Phys. Rev. E, 80, 016211, (2009)
[243] Pisarchik, A. N.; Barmenkov, Y. O.; Kir’yanov, A. V., Experimental demonstration of attractor annihilation in a multistable fiber laser, Phys. Rev. E, 68, 066211, (2003)
[244] Goswami, B. K., Controlled destruction of chaos in the multistable regime, Phys. Rev. E, 76, 016219, (2007)
[245] Saucedo Solorio, J. M.; Pisarchik, A. N.; Aboites, V., Shift of saddle-node bifurcation points in modulated Hénon map, Rev. Mexicana Fís., 48, 290-294, (2002) · Zbl 0999.37015
[246] Pisarchik, A. N.; Corbalán, R., Shift of attractor boundaries in a system with a slow harmonic parameter perturbation, Physica D, 150, 14-24, (2001) · Zbl 0986.34035
[247] Hénon, M., 2-dimensional mapping with a strange attractor, Comm. Math. Phys., 50, 69-77, (1976) · Zbl 0576.58018
[248] Scheffczyk, C.; Parlitz, U.; Kurz, T.; Knop, W.; Lauterborn, W., Comparison of bifurcation structures of driven dissipative nonlinear oscillators, Phys. Rev. A, 43, 6495-6502, (1991)
[249] Grebogi, C.; Ott, E.; Yorke, J. A., Crises, sudden changes in chaotic attractors, and transient chaos, Physica D, 7, 181-200, (1983) · Zbl 0561.58029
[250] Egorov, E. N.; Koronovskii, A. A., Dynamical control in multistable systems, Tech. Phys. Lett., 30, 186-189, (2004)
[251] Pisarchik, A. N.; Kuntsevich, B. K., Control of multistability in a directly modulated diode laser, IEEE J. Quantum Electron., 38, 1594-1598, (2002)
[252] Pisarchik, A. N.; Jaimes-Reátegui, R., Control of basins of attractors in a multistable fiber laser, Phys. Lett. A, 374, 228-234, (2009) · Zbl 1235.78032
[253] Pisarchik, A. N., Oscillation death in coupled nonautonomous systems with parametrical modulation, Phys. Lett. A, 318, 65-70, (2003) · Zbl 1098.37504
[254] Jaimes-Reategui, R.; Pisarchik, A. N., Control of on-off intermittency by slow parametric modulation, Phys. Rev. E, 69, 067203, (2004)
[255] Lai, Y.-C., Driving trajectories to a desirable attractor by using small, Phys. Lett. A, 221, 375-383, (1996) · Zbl 0972.37505
[256] Macau, E. E.N.; Grebogi, C., Driving trajectories in complex systems, Phys. Rev. E, 59, 4062-4070, (1999)
[257] Gadaleta, S.; Dangelmayr, G., Learning to control a complex multistable system, Phys. Rev. E, 63, 036217, (2001)
[258] Shinbrot, T.; Ott, E.; Greboggi, C.; Yorke, J. A., Using chaos to direct trajectories to targets, Phys. Rev. Lett., 65, 3215-3218, (1990)
[259] Bertsekas, D. P.; Tsitsiklis, J. N., Neuro-dynamic programming, (1996), Athena Scientific · Zbl 0924.68163
[260] Åström, K. J.; Wittenmark, B., Computer-control systems: theory and design, (1997), Prentice Hall Englewood Cliffs, NJ
[261] Der, R.; Herrmann, M., Q-learning chaos controller, (Proceedings of the 1994 IEEE International Conference on Neural Networks, vol. 4, (1994), IEEE New York), 2472-2475
[262] Gadaleta, S.; Dangelmayr, G., Optimal chaos control through reinforcement learning, Chaos, 9, 775-788, (1999) · Zbl 0996.37034
[263] Martinetz, T. M.; Berkovich, S. G.; Schulten, K. J., Neural-gas network for vector quantization and its application to time-series prediction, IEEE Trans. Neural Netw., 4, 558-569, (1993)
[264] Jiang, Yu, Trajectory selection in multistable systems using periodic drivings, Phys. Lett. A, 4, 22-29, (1999)
[265] Pyragas, K., Continuous control of chaos by self-controlling feedback, Phys. Lett. A, 170, 421-428, (1992)
[266] Arecchi, F. T.; Meucci, R.; Gadomski, W., Laser dynamics with competing instabilities, Phys. Rev. Lett., 58, 2205-2208, (1987)
[267] Shilnikov, L. P., A case of the existence of a denumerable set of periodic motions, Sov. Math. Dokl., 6, 163-166, (1965)
[268] Pisarchik, A. N.; Meucci, R.; Arecchi, F. T., Discrete homoclinic orbits in a laser with feedback, Phys. Rev. E, 62, 8823-8825, (2000)
[269] Pisarchik, A. N.; Meucci, R.; Arecchi, F. T., Theoretical and experimental study of discrete behavior of shilnikov chaos in a CO_{2} laser, Eur. Phys. J. D, 13, 385-391, (2001)
[270] Meucci, R.; Labate, A.; Ciofini, M., Controlling chaos by negative feedback of subharmonic components, Phys. Rev. E, 56, 2829-2834, (1997)
[271] Ciofini, M.; Labate, A.; Meucci, R.; Galanti, M., Stabilization of unstable fixed points in the dynamics of a laser with feedback, Phys. Rev. E, 60, 398-402, (1999)
[272] Arecchi, F. T.; Meucci, R.; Allaria, E.; Di Garbo, A.; Tsimring, L. S., Delayed self-synchronization in homoclinic chaos, Phys. Rev. E, 65, 046237, (2002)
[273] S.A. Akhmanov, Y.E. D’yakov, A.S. Chirkin, Introduction to Radiophysics and Optics, Nauka, Moscow, 1981.
[274] Fedorov, A. V.; Harper, S. L.; Winter, B.; Wittenberg, A., How predictable is el niño?, Bull. Am. Meteorol. Soc., 84, 911-919, (2003)
[275] Chen, D.; Cane, M. A.; Kaplan, A.; Zabiak, S. E.; Huang, D., Predictability of el niño in the past 148 years, Nature, 428, 733-736, (2004)
[276] Greenman, J. V.; Benton, T. G., The amplification of environmental noise in population models: causes and consequences, Amer. Nat., 161, 225-239, (2003)
[277] Erguler, K.; Strumpf, M. P.H., Statistical interpretation of the interplay between noise and chaos, Math. Biosci., 216, 90-99, (2008) · Zbl 1151.92026
[278] Surovyatkina, E., Prebifurcation noise amplification and noise-dependent hysteresis as indicators of bifurcations in nonlinear geophysical systems, Nonlinear Process. Geophys., 12, 25-29, (2005)
[279] Alonso, D.; McKane, A. J.; Pascual, M., Stochastic amplification in epidemics, J. R. Soc. Interface, 4, 575-582, (2007)
[280] García-Ojalvo, J.; Roy, R., Noise amplification in a stochastic ikeda model, Phys. Lett. A, 224, 51-56, (1996)
[281] Pisarchik, A. N.; Pochepen, O. N.; Pisarchyk, L. A., Increasing blood glucose variability is a precursor of sepsis and mortality in burned patients, PLoS One, 7, e46582, (2012)
[282] Giacomelli, G.; Marin, F.; Rabbiosi, I., Stochastic and Bona fide resonance: an experimental investigation, Phys. Rev. Lett., 82, 675-678, (1999)
[283] Giacomelli, G.; Giudici, M.; Balle, S.; Tredicce, J. R., Experimental evidence of coherence resonance in an optical system, Phys. Rev. Lett., 84, 3298-3301, (2000)
[284] Chizhevsky, V. N.; Smeu, E.; Giacomelli, G., Experimental evidence of “vibrational resonance” in an optical system, Phys. Rev. Lett., 91, 220602, (2003)
[285] Kaneko, K., On the strength of attractors in a high-dimensional system, Physica (Amsterdam), 124D, 322-344, (1998) · Zbl 1040.37502
[286] Pisarchik, A. N., Control of multistability in systems with coexisting attractors, (Some Topics of Modern Optics, (2008), Rinton Press Paramus), 326-391
[287] Feudel, U.; Grebogi, C.; Poon, L.; Yorke, J. A., Dynamical properties of a simple mechanical system with a large number of coexisting periodic attractors, Chaos Solitons Fractals, 9, 171-180, (1998) · Zbl 0963.70556
[288] Kraut, S.; Feudel, U., Multistability, noise, and attractor hopping: the crucial role of chaotic saddles, Phys. Rev. E, 66, 015207, (2002)
[289] Masoller, C., Noise-induced resonance in delayed feedback systems, Phys. Rev. Lett., 88, 034102, (2002)
[290] Huerta-Cuellar, G.; Pisarchik, A. N.; Barmenkov, Yu. O., Experimental characterization of hopping dynamics in a multistable fiber laser, Phys. Rev. E, 78, 035202(R), (2008)
[291] Kim, S.; Park, S. H.; Ryu, C. S., Noise-enchanced multistability in coupled oscillator systems, Phys. Rev. Lett., 78, 1616-1619, (1997)
[292] Arecchi, F. T.; Califano, A., Generalized multistability and noise-induced jumps in a nonlinear dynamical system, Europhys. Lett., 3, 5-10, (1987)
[293] Barbéroshie, A. E.; Gontsya, I. I.; Nika, Y. N.; Rotaru, A. K., Noise-induced optical multistability, J. Exper. Theor. Phys., 104, 2655-2667, (1993)
[294] Pisarchik, A. N.; Jaimes-Reátegui, R.; Sevilla-Escoboza, R.; Huerta-Cuillar, G.; Taki, M., Rogue waves in a multistable fiber laser, Phys. Rev. Lett., 107, 274101, (2011)
[295] Pisarchik, A. N.; Jaimes-Reátegui, R.; Sevilla-Escoboza, R.; Huerta-Cuellar, G., Multistate intermittency and extreme pulses in a fiber laser, Phys. Rev. E, 86, 056219, (2012)
[296] Huerta-Cuellar, G.; Pisarchik, A. N.; Kir’yanov, A. V.; Barmenkov, Yu. O.; del Valle Hernández, J., Prebifurcation noise amplification in a fiber laser, Phys. Rev. E, 79, 036204, (2009)
[297] Pisarchik, A. N.; Martínez-Zérega, B. E., Noise-induced attractor annihilation in the delayed feedback logistic map, Phys. Lett. A, 377, 3016-3020, (2013) · Zbl 1322.37025
[298] Crutchfield, J.; Huberman, B., Partition complexity in network of chaotic elements, J. Phys. A Math. Gen., 24, 2107-2119, (1991) · Zbl 0733.58039
[299] Crisanti, A.; Falcioni, M.; Vulpiani, A., Broken ergodicity and glassy behavior in a deterministic chaotic map, Phys. Rev. Lett., 76, 2107-2119, (1996)
[300] Popovych, O.; Pikovsky, A.; Maistrenko, Yu., Cluster splitting bifurcation in a system of coupled maps, Physica D, 168-169, (2000), 106-125
[301] Manruiba, S. C.; Mikhailov, A., Globally coupled logistic maps as dynamical glasses, Europhys. Lett., 53, 451-457, (2001)
[302] Willeboordse, F. H.; Kaneko, K., Externally controlled attractor selection in a high-dimensional system investigated and shown to be controllable by external inputs, Phys. Rev. E, 72, 026207, (2005)
[303] Nagai, Y.; Hua, X.-D.; Lai, Y.-C., Controlling on-off intermittent dynamics, Phys. Rev. E, 54, 1190-1199, (1996)
[304] Lai, Y.-C.; Grebogi, C., Intermingled basins and two-state on-off intermittency, Phys. Rev. E, 52, R3313-R3316, (1995)
[305] Pisarchik, A. N.; Jaimes-Reátegui, R.; Villalobos-Salazar, J. R.; Garcia-Lopez, J. H.; Boccaletti, S., Synchronization of chaotic systems with coexisting attractors, Phys. Rev. Lett., 96, 244102, (2006)
[306] Pisarchik, A. N.; Jaimes-Reátegui, R.; García-Lopez, J. H., Synchronization of coupled bistable chaotic systems: experimental study, Phil. Trans. Roy. Soc., Ser. A, 366, 459-473, (2008)
[307] Pisarchik, A. N.; Jaimes-Reátegui, R.; García-Lopez, J. H., Synchronization of multistable systems, Int. J. Bifurcation Chaos, 18, 1801-1819, (2008)
[308] Riecke, H.; Roxin, A.; Madruga, S.; Solla, S., Multiple attractors, long chaotic transients, and failure in small-world inetworks of excitable neurons, Chaos, 17, 026110, (2007) · Zbl 1159.37386
[309] Albert, R.; Barabási, A.-L., Statistical mechanics of complex networks, Rev. Modern Phys., 74, 47-97, (2002) · Zbl 1205.82086
[310] Gross, T.; D’Lima, C. D.; Blasius, B., Epidemic dynamics on an adaptive network, Phys. Rev. Lett., 96, 208701, (2006)
[311] Hartley, T. T.; Lorenzo, C. F.; Qammer, H. K., Chaos in fractional order chua’s systems, IEEE Trans. Circuits Syst.-I, 42, 485-490, (1995)
[312] Sun, K.; Wang, X.; Sprott, J. C., Bifurcations and chaos in fractional-order simplified Lorenz system, Int. J. Bifurcation Chaos, 20, 1209-1219, (2010) · Zbl 1193.34005
[313] Hamri, N.; Houmor, T., Chaotic dynamics of the fractional order nonlinear Bloch systems, Electron. J. Theor. Phys., 25, 233-244, (2011)
[314] Kaslik, E.; Sivasundaram, S., Nonlinear dynamics and chaos in fractional-order neural networks, Neural Netw., 32, 245-256, (2012) · Zbl 1254.34103
[315] Levnajić, Z., Emergent multistability and frustration in phase-repulsive networks of oscillators, Phys. Rev. E, 84, 016231, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.