×

zbMATH — the first resource for mathematics

Mathematical frameworks for oscillatory network dynamics in neuroscience. (English) Zbl 1356.92015
Summary: The tools of weakly coupled phase oscillator theory have had a profound impact on the neuroscience community, providing insight into a variety of network behaviours ranging from central pattern generation to synchronisation, as well as predicting novel network states such as chimeras. However, there are many instances where this theory is expected to break down, say in the presence of strong coupling, or must be carefully interpreted, as in the presence of stochastic forcing. There are also surprises in the dynamical complexity of the attractors that can robustly appear – for example, heteroclinic network attractors. In this review we present a set of mathematical tools that are suitable for addressing the dynamics of oscillatory neural networks, broadening from a standard phase oscillator perspective to provide a practical framework for further successful applications of mathematics to understanding network dynamics in neuroscience.

MSC:
92C20 Neural biology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Huygens C. Oeuvres complétes de Christiaan Huygens. La Haye: Martinus Nijhoff; 1888. doi:10.5962/bhl.title.21031.
[2] Rayleigh JWSB. The theory of sound. Vol. 2. London: Macmillan; 1896.
[3] Pol, B, Forced oscillations in a circuit with non-linear resistance, Lond Edinb Dublin Philos Mag J Sci, Ser 7, 3, 65-80, (1927)
[4] Wiener N. Cybernetics; or control and communication in the animal and the machine; 1948. · Zbl 0155.27901
[5] Kuramoto Y. Chemical oscillations, waves and turbulence. Heidelberg: Springer; 1984. · Zbl 0558.76051
[6] Michaels, DC; Matyas, EP; Jalife, J, Mechanisms of sinoatrial pacemaker synchronization: a new hypothesis, Circ Res, 61, 704-714, (1987)
[7] Liu, C; Weaver, DR; Strogatz, SH; Reppert, SM, Cellular construction of a Circadian clock: period determination in the suprachiasmatic nuclei, Cell, 91, 855-860, (1997)
[8] Ermentrout, GB, An adaptive model for synchrony in the firefly pteroptyx malaccae, J Math Biol, 29, 571-585, (1991) · Zbl 0719.92009
[9] Wiesenfeld, K; Colet, P; Strogatz, SH, Frequency locking in Josephson arrays: connection with the Kuramoto model, Phys Rev E, 57, 1563-1569, (1998)
[10] Néda, Z; Ravasz, E; Vicsek, T; Brechet, Y; Barabási, A-L, Physics of the rhythmic applause, Phys Rev E, 61, 6987-6992, (2000)
[11] Ha, SY; Jeong, E; Kang, MJ, Emergent behaviour of a generalized viscek-type flocking model, Nonlinearity, 23, 3139-3156, (2010) · Zbl 1206.92074
[12] Paley, DA; Leonard, NE; Sepulchre, R; Grunbaum, D; Parrish, JK, Oscillator models and collective motion, IEEE Control Syst Mag, 27, 89-105, (2007)
[13] Assenza, S; Gutiérrez, R; Gómez-Gardenes, J; Latora, V; Boccaletti, S, Emergence of structural patterns out of synchronization in networks with competitive interactions, Sci Rep, 1, (2011)
[14] Dörfler, F; Bullo, F, Synchronization in complex networks of phase oscillators: a survey, Automatica, 50, 1539-1564, (2014) · Zbl 1296.93005
[15] Velazquez, JLP, Brain research: a perspective from the coupled oscillators field, NeuroQuantology, 4, 55-165, (2006)
[16] Singer, W, Synchronization of cortical activity and its putative role in information processing and learning, Annu Rev Physiol, 55, 349-374, (1993)
[17] Uhlhaas, PJ; Pipa, G; Lima, B; Melloni, L; Neuenschwander, S; Nikolic, D; Lin, S-C, Neural synchrony in cortical networks: history, concept and current status, Neuroscience, 3, 1-19, (2009)
[18] Wang, XJ, Neurophysiological and computational principles of cortical rhythms in cognition, Physiol Rev, 90, 1195-1268, (2010)
[19] Fell, J; Axmacher, N, The role of phase synchronization in memory processes, Nat Rev Neurosci, 12, 105-118, (2011)
[20] Wehr, M; Laurent, G, Odour encoding by temporal sequences of firing in oscillating neural assemblies, Nature, 384, 162-166, (1996)
[21] Laurent, G; Stopfer, M; Friedrich, RW; Rabinovich, MI; Volkovskii, A; Abarbanel, HD, Odor encoding as an active, dynamical process: experiments, computation, and theory, Annu Rev Neurosci, 24, 263-297, (2001)
[22] Buzśaki, G; Draguhn, A, Neuronal oscillations in cortical networks, Science, 304, 1926-1929, (2004)
[23] Haken, H; Kelso, JAS; Bunz, H, A theoretical model of phase transitions in human hand movements, Biol Cybern, 51, 347-356, (1985) · Zbl 0548.92003
[24] Kelso JAS. Dynamic patterns: the self-organization of brain and behaviour. Cambridge: MIT Press; 1995.
[25] Stein PSG, Grillner S, Selverston AI, Stuart DG, editors. Neurons, networks and motor behavior. Cambridge: MIT Press; 1999.
[26] Milton J, Jung P, editors. Epilepsy as a dynamic disease. Berlin: Springer; 2003. · Zbl 1058.92027
[27] Coombes, S; Terry, JR, The dynamics of neurological disease: integrating computational, experimental and clinical neuroscience, Eur J Neurosci, 36, 2118-2120, (2012)
[28] Titcombe, MS; Edwards, R; Beuter, A, Mathematical modelling of Parkinsonian tremor, Nonlinear Stud, 11, 363-384, (2004) · Zbl 1053.92027
[29] Bressler, SL, Cortical coordination dynamics and the disorganization syndrome in schizophrenia, Neuropsychopharmacology, 28, 35-39, (2003)
[30] Tass PA. Phase resetting in medicine and biology: stochastic modelling and data analysis. Berlin: Springer; 1999. · Zbl 0935.92014
[31] Tass, PA; Hauptmann, C; Popovych, OV, Development of therapeutic brain stimulation techniques with methods from nonlinear dynamics and statistical physics, Int J Bifurc Chaos, 16, 1889-1911, (2006) · Zbl 1154.92317
[32] Rao RPN. Brain-computer interfacing: an introduction. Cambridge: Cambridge University Press; 2013.
[33] Coombes S, Bressloff PC, editors. Bursting: the genesis of rhythm in the nervous system. Singapore: World Scientific; 2005. · Zbl 1094.92500
[34] Rinzel, J; Huguet, G, Nonlinear dynamics of neuronal excitability, oscillations, and coincidence detection, Commun Pure Appl Math, 66, 1464-1494, (2013) · Zbl 1402.92111
[35] Kuehn C. Multiple time scale dynamics. Cham: Springer; 2015. · Zbl 1335.34001
[36] Fitzhugh, R, Impulses and physiological states in theoretical models of nerve membrane, Biophys J, 1, 445-466, (1961)
[37] Coombes, S; Osbaldestin, AH, Period adding bifurcations and chaos in a periodically stimulated excitable neural relaxation oscillator, Phys Rev E, 62, 4057-4066, (2000)
[38] Berger H. Über das Elektrenkephalogramm des Menschen. Arch Psychiatr Nervenkrankh. 1929;87:527-70.
[39] Voss, L; Sleigh, J, Monitoring consciousness: the current status of EEG-based depth of anaesthesia monitors, Best Pract Res Clin Anaesthesiol, 21, 313-325, (2007)
[40] Sherman M, Guillery RW. Functional connections of cortical areas: a new view from the thalamus. Cambridge: MIT Press; 2013.
[41] Wright, JJ; Liley, DTJ, Dynamics of the brain at global and microscopic scales: neural networks and the EEG, Behav Brain Sci, 19, 285-320, (1996)
[42] David, O; Friston, KJ, A neural mass model for MEG/EEG: coupling and neuronal dynamics, NeuroImage, 20, 1743-1755, (2003)
[43] Hoppensteadt FC, Izhikevich EM. Weakly connected neural networks. New York: Springer; 1997.
[44] Fenichel, N, Persistence and smoothness of invariant manifolds for flows, Indiana Univ Math J, 21, 193-226, (1971) · Zbl 0246.58015
[45] Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York: Springer; 1990. (Applied mathematical sciences; vol. 42). · Zbl 0515.34001
[46] Kopell, N, Toward a theory of modelling central pattern generators, (1988), New York
[47] Cabral, J; Hugues, E; Sporns, O; Deco, G, Role of local network oscillations in resting-state functional connectivity, NeuroImage, 57, 130-139, (2011)
[48] Izhikevich E. Dynamical systems in neuroscience: the geometry of excitability and bursting. Cambridge: MIT Press; 2006.
[49] Ermentrout GB, Terman DH. Mathematical foundations of neuroscience. New York: Springer; 2010. · Zbl 1320.92002
[50] Hodgkin, AL; Huxley, AF, A quantitative description of membrane and its application to conduction and excitation in nerve, J Physiol, 117, 500-544, (1952)
[51] Rinzel, J, Electrical excitability of cells, theory and experiment: review of the Hodgkin-Huxley foundation and an update, Bull Math Biol, 52, 3-23, (1990)
[52] Abbott, LF; Kepler, TB; Garrido, L (ed.), Model neurons: from Hodgkin-Huxley to Hopfield, No. 368, 5-18, (1990), Berlin
[53] Wilson, HR, Simplified dynamics of human and Mammalian neocortical neurons, J Theor Biol, 200, 375-388, (1999)
[54] Morris, C; Lecar, H, Voltage oscillations in the barnacle giant muscle fiber, Biophys J, 35, 193-213, (1981)
[55] Badel, L; Lefort, S; Berger, TK; Petersen, CCH; Gerstner, W; Richardson, MJE, Extracting nonlinear integrate-and-fire models from experimental data using dynamic I-V curves, Biol Cybern, 99, 361-370, (2008) · Zbl 1161.92005
[56] Latham, PE; Richmond, BJ; Nelson, PG; Nirenberg, S, Intrinsic dynamics in neuronal networks I. theory, J Neurophysiol, 83, 808-827, (2000)
[57] Izhikevich, EM, Simple model of spiking neurons, IEEE Trans Neural Netw, 14, 1569-1572, (2003)
[58] Coombes, S; Thul, R; Wedgwood, KCA, Nonsmooth dynamics in spiking neuron models, Physica D, 241, 2042-2057, (2012)
[59] Brown, TG, On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression and a theory of the evolution of function in the nervous system, J Physiol (Lond), 48, 18-46, (1914)
[60] Connors BW, editor. Gap junctions in the mammalian brain. Boca Raton: CRC Press; 2005.
[61] Torben-Nielsen, B; Segev, I; Yarom, Y, The generation of phase differences and frequency changes in a network model of inferior olive subthreshold oscillations, PLoS Comput Biol, 8, (2012)
[62] Liley, DTJ; Cadusch, PJ; Dafilis, MP, A spatially continuous Mean field theory of electrocortical activity, Netw Comput Neural Syst, 13, 67-113, (2002) · Zbl 1019.92004
[63] Deco, G; Jirsa, VK; McIntosh, AR, Emerging concepts for the dynamical organization of resting-state activity in the brain, Nat Rev Neurosci, 12, 43-56, (2011)
[64] Young, CK; Eggermont, JJ, Coupling of mesoscopic brain oscillations: recent advances in analytical and theoretical perspectives, Prog Neurobiol, 89, 61-78, (2009)
[65] Wilson, HR; Cowan, JD, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys J, 12, 1-24, (1972)
[66] Jansen, BH; Rit, VG, Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns, Biol Cybern, 73, 357-366, (1995) · Zbl 0827.92010
[67] Touboul, J; Wendling, F; Chauvel, P; Faugeras, O, Neural mass activity, bifurcations, and epilepsy, Neural Comput, 23, 3232-3286, (2011)
[68] Jedynak, M; Pons, AJ; Garcia-Ojalvo, J, Cross-frequency transfer in a stochastically driven mesoscopic neuronal model, Front Comput Neurosci, 9, (2015)
[69] Spiegler, A; Knösche, TR; Schwab, K; Haueisen, J; Atay, FM, Modeling brain resonance phenomena using a neural mass model, PLoS Comput Biol, 7, (2011)
[70] Breakspear, M; Roberts, JA; Terry, JR; Rodrigues, S; Mahant, N; Robinson, PA, A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis, Cereb Cortex, 16, 1296-1313, (2006)
[71] Terry, JR; Benjamin, O; Richardson, MP, Seizure generation: the role of nodes and networks, Epilepsia, 53, 166-169, (2012)
[72] Chowdhury, FA; Woldman, W; FitzGerald, TH; Elwes, RD; Nashef, L; Terry, JR; Richardson, MP, Revealing a brain network endophenotype in families with idiopathic generalised epilepsy, PLoS ONE, 9, (2014)
[73] Valdes-Sosa, PA; Sanchez-Bornot, JM; Sotero, RC; Iturria-Medina, Y; Aleman-Gomez, Y; Bosch-Bayard, J; Carbonell, F; Ozaki, T, Model driven EEG/fMRI fusion of brain oscillations, Hum Brain Mapp, 30, 2701-2721, (2009)
[74] Gençay, R; Liu, T, Nonlinear modelling and prediction with feedforward and recurrent networks, Physica D, 108, 119-134, (1997)
[75] Arenas, A; Díaz-Guilera, A; Kurths, J; Moreno, Y; Zhou, C, Synchronization in complex networks, Phys Rep, 469, 93-153, (2008)
[76] Pikovsky A, Rosenblum M, Kurths J. Synchronization. Cambridge: Cambridge University Press; 2001. (Cambridge nonlinear science series; vol. 12).
[77] Brette, R, Computing with neural synchrony, PLoS Comput Biol, 8, (2012)
[78] Brunel, N; Hakim, V, Sparsely synchronized neuronal oscillations, Chaos, 18, (2008)
[79] Casagrande, V; Mikhailov, A, Birhythmicity, synchronization, and turbulence in an oscillatory system with nonlocal inertial coupling, Physica D, 205, 154-169, (2005) · Zbl 1078.35044
[80] Deville, REL; Peskin, CS, Synchrony and asynchrony for neuronal dynamics defined on complex networks, Bull Math Biol, 74, 769-802, (2012) · Zbl 1396.92013
[81] Nowotny, T; Huerta, R; Rabinovich, MI, Neuronal synchrony: peculiarity and generality, Chaos, 18, (2008)
[82] Parga, N; Abbott, LF, Network model of spontaneous activity exhibiting synchronous transitions between up and down states, Front Neurosci, 1, 57-66, (2007)
[83] Pinsky, PF; Rinzel, J, Synchrony measures for biological neural networks, Biol Cybern, 137, 129-137, (1995) · Zbl 0826.92009
[84] Popovych, OV; Hauptmann, C; Tass, P, Control of neuronal synchrony by nonlinear delayed feedback, Biol Cybern, 95, 69-85, (2006) · Zbl 1169.93338
[85] Rubin, J; Terman, D, Synchronized activity and loss of synchrony among heterogeneous conditional oscillators, SIAM J Appl Dyn Syst, 1, 146-174, (2002) · Zbl 1015.34027
[86] Sorrentino, F; Ott, E, Network synchronization of groups, Phys Rev E, 76, (2007)
[87] Reyes, AD, Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro, Nat Neurosci, 6, 593-599, (2003)
[88] Boccaletti, S; Latora, V; Moreno, Y; Chavez, M; Hwang, D-U, Complex networks: structure and dynamics, Phys Rep, 424, 175-308, (2006) · Zbl 1371.82002
[89] Nekorkin, VI; Voronin, ML; Velarde, MG, Clusters in an assembly of globally coupled bistable oscillators, Eur Phys J B, 9, 533-543, (1999)
[90] Newman MEJ. Networks: an introduction. Oxford: Oxford University Press; 2010.
[91] Do A-L, Gross T. Self-organization in continuous adaptive networks. Copenhagen: River; 2012.
[92] Stam, CJ, Modern network science of neurological disorders, Nat Rev Neurosci, 15, 683-695, (2014)
[93] Atay, FM; Biyikoglu, T; Jost, J, Network synchronization: spectral versus statistical properties, Physica D, 224, 35-41, (2006) · Zbl 1130.37344
[94] Pecora, L; Carroll, T; Johnson, G; Mar, D; Fink, KS, Synchronization stability in coupled oscillator arrays: solution for arbitrary configurations, Int J Bifurc Chaos, 10, 273-290, (2000) · Zbl 1090.34542
[95] Pecora, L; Barahona, M, Synchronization of oscillators in complex networks, Chaos Complex Lett, 1, 61-91, (2005) · Zbl 1176.34045
[96] Rothkegel, A; Lehnertz, K, Recurrent events of synchrony in complex networks of pulse-coupled oscillators, Europhys Lett, 95, (2011)
[97] Milo, R; Shen-Orr, S; Itzkovitz, S; Kashtan, N; Chklovskii, D; Alon, U, Network motifs: simple building blocks of complex networks, Science, 298, 824-827, (2002)
[98] Sporns, O; Kötter, R, Motifs in brain networks, PLoS Biol, 2, (2004)
[99] Sporns, O; Honey, CJ; Kötter, R, Identification and classification of hubs in brain networks, PLoS ONE, 2, (2007)
[100] Kamei, H, The existence and classification of synchrony-breaking bifurcations in regular homogeneous networks using lattice structures, Int J Bifurc Chaos, 19, 3707-3732, (2009) · Zbl 1182.34054
[101] Benjamin, O; Fitzgerald, THB; Ashwin, P; Tsaneva-Atanasova, K; Chowdhury, F; Richardson, MP; Terry, JR, A phenomenological model of seizure initiation suggests network structure may explain seizure frequency in idiopathic generalised epilepsy, J Math Neurosci, 2, (2012) · Zbl 1291.92022
[102] Ermentrout, GB; Kopell, N, Oscillator death in systems of coupled neural oscillators, SIAM J Appl Math, 50, 125-146, (1990) · Zbl 0686.34033
[103] Ashwin, P; Dangelmayr, G, Isochronicity-induced bifurcations in systems of weakly dissipative coupled oscillators, Dyn Stab Syst, 15, 263-286, (2000) · Zbl 0976.34033
[104] Sepulchre, J-A; MacKay, RS, Localized oscillations in conservative or dissipative networks of weakly coupled autonomous oscillators, Nonlinearity, 10, 679-713, (1997) · Zbl 0905.39004
[105] Campbell, SA, Time delays in neural systems, (2007), Berlin
[106] Hoevel, P; Dahlem, MA; Schoell, E, Control of synchronization in coupled neural systems by time-delayed feedback, Int J Bifurc Chaos, 20, 813-815, (2010)
[107] Dhamala, M; Jirsa, V; Ding, M, Enhancement of neural synchrony by time delay, Phys Rev Lett, 92, (2004)
[108] Levnajić, Z; Pikovsky, A, Phase resetting of collective rhythm in ensembles of oscillators, Phys Rev E, 82, (2010)
[109] Atay FM. Complex time-delay systems. Berlin: Springer; 2010. (Understanding complex systems).
[110] Engelborghs, K; Luzyanina, T; Roose, D, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans Math Softw, 28, 1-21, (2002) · Zbl 1070.65556
[111] Sieber J, Engelborghs K, Luzyanina T, Samaey G, Roose D. DDE-BIFTOOL manual—bifurcation analysis of delay differential equations. arXiv:1406.7144 (2014). · Zbl 0708.58020
[112] Coombes, S; Laing, C, Delays in activity-based neural networks, Philos Trans R Soc A, 367, 1117-1129, (2009) · Zbl 1185.92003
[113] MacArthur, BD; Sanchez-Garcia, RJ; Anderson, JW, Symmetry in complex networks, Discrete Appl Math, 156, 3525-3531, (2008) · Zbl 1168.05058
[114] Golubitsky M, Schaeffer DG. Singularities and groups in bifurcation theory. Vol. I. New York: Springer; 1985. (Applied mathematical sciences; vol. 51).
[115] Golubitsky M, Stewart I, Schaeffer DG. Singularities and groups in bifurcation theory. Vol. II. New York: Springer; 1988. (Applied mathematical sciences; vol. 69). · Zbl 0691.58003
[116] Golubitsky M, Stewart I. The symmetry perspective: from equilibrium to chaos in phase space and physical space. Basel: Birkhäuser Verlag; 2002. (Progress in mathematics; vol. 200). · Zbl 1031.37001
[117] Bressloff, PC; Cowan, JD; Golubitsky, M; Thomas, PJ; Wiener, MC, What geometric visual hallucinations tell us about the visual cortex, Neural Comput, 14, 473-491, (2002) · Zbl 1037.91083
[118] Ashwin, P; Swift, JW, The dynamics of \(n\) weakly coupled identical oscillators, J Nonlinear Sci, 2, 69-108, (1992) · Zbl 0872.58049
[119] Bressloff, PC; Coombes, S, Symmetry and phase-locking in a ring of pulse-coupled oscillators with distributed delays, Physica D, 126, 99-122, (1999) · Zbl 0937.34060
[120] Brown, E; Holmes, P; Moehlis, J; Kaplan, E (ed.); Marsden, J (ed.); Sreenivasan, K (ed.), Globally coupled oscillator networks, 183-215, (2003), New York · Zbl 1132.92316
[121] Othmer, HG; Scriven, LE, Instability and dynamic pattern in cellular networks, J Theor Biol, 32, 507-537, (1971)
[122] Dionne, B; Golubitsky, M; Stewart, I, Coupled cells with internal symmetry. I. wreath products, Nonlinearity, 9, 559-574, (1996) · Zbl 0894.58049
[123] Kuznetsov YA. Elements of applied bifurcation theory. 2nd ed. New York: Springer; 1998. (Applied mathematical sciences; vol. 112). · Zbl 0914.58025
[124] Krauskopf B, Osinga HM, Galan-Vioque J, editors. Numerical continuation methods for dynamical systems path following and boundary value problems. Heidelberg: Springer; 2007. · Zbl 1117.65005
[125] Dhooge, A; Govaerts, W; Kuznetsov, YA, MATCONT: a MATLAB package for numerical bifurcation analysis of odes, ACM Trans Math Softw, 29, 141-164, (2003) · Zbl 1070.65574
[126] Kuznetsov YA, Levitin VV, Skovoroda AR. Continuation of stationary solutions to evolution problems in CONTENT. Amsterdam, The Netherlands: Centrum voor Wiskunde en Informatica; 1996. Report No.: AM-R9611. · Zbl 1291.92052
[127] Ermentrout GB. Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Philadelphia: SIAM; 2002. · Zbl 1003.68738
[128] Krupa, M, Robust heteroclinic cycles, J Nonlinear Sci, 7, 129-176, (1997) · Zbl 0879.58054
[129] Krupa, M; Melbourne, I, Asymptotic stability of heteroclinic cycles in systems with symmetry. II, Proc R Soc Edinb, Sect A, 134, 1177-1197, (2004) · Zbl 1073.37025
[130] Ashwin, P; Field, M, Heteroclinic networks in coupled cell systems, Arch Ration Mech Anal, 148, 107-143, (1999) · Zbl 0947.37012
[131] Dellnitz, M; Field, M; Golubitsky, M; Ma, J; Hohmann, A, Cycling chaos, Int J Bifurc Chaos, 5, 1243-1247, (1995) · Zbl 0886.58077
[132] Ashwin, P; Rucklidge, AM, Cycling chaos: its creation, persistence and loss of stability in a model of nonlinear magnetoconvection, Physica D, 122, 134-154, (1998) · Zbl 0955.76035
[133] Rabinovich, M; Varona, P; Selverston, A; Abarbanel, H, Dynamical principles in neuroscience, Rev Mod Phys, 78, 1213-1265, (2006)
[134] Rabinovich, MI; Varona, P; Tristan, I; Afraimovich, VS, Chunking dynamics: heteroclinics in mind, Front Comput Neurosci, 8, (2014)
[135] Stewart, I; Golubitsky, M; Pivato, M, Symmetry groupoids and patterns of synchrony in coupled cell networks, SIAM J Appl Dyn Syst, 2, 609-646, (2003) · Zbl 1089.34032
[136] Golubitsky, M; Stewart, I, Nonlinear dynamics of networks: the groupoid formalism, Bull Am Math Soc, 43, 305-364, (2006) · Zbl 1119.37036
[137] Aguiar, M; Ashwin, P; Dias, A; Field, M, Dynamics of coupled cell networks: synchrony, heteroclinic cycles and inflation, J Nonlinear Sci, 21, 271-323, (2011) · Zbl 1254.37053
[138] Aguiara, MAD; Dias, APS; Golubitsky, M; Leitee, MD-CA, Bifurcations from regular quotient networks: a first insight, Physica D, 238, 137-155, (2009) · Zbl 1155.37315
[139] Dias, APS; Pinho, EM, Spatially periodic patterns of synchrony in lattice networks, SIAM J Appl Dyn Syst, 8, 641-675, (2009) · Zbl 1173.82004
[140] Stewart, I; Parker, M, Periodic dynamics of coupled cell networks I: rigid patterns of synchrony and phase relations, Dyn Syst, 22, 389-450, (2007) · Zbl 1162.37312
[141] Golubitsky, M; Romano, D; Wang, Y, Network periodic solutions: patterns of phase-shift synchrony, Nonlinearity, 25, 1045-1074, (2012) · Zbl 1245.34043
[142] Field, MJ, Combinatorial dynamics, Dyn Syst, 19, 217-243, (2004) · Zbl 1058.37008
[143] Agarwal, N; Field, MJ, Dynamical equivalence of network architecture for coupled dynamical systems I: asymmetric inputs, Nonlinearity, 23, 1245-1268, (2010) · Zbl 1197.37017
[144] Agarwal, N; Field, MJ, Dynamical equivalence of network architecture for coupled dynamical systems II: general case, Nonlinearity, 23, 1269-1289, (2010) · Zbl 1197.37018
[145] Holmes, P; Rand, D, Phase portraits and bifurcations of the non-linear oscillator \(\ddot{x}+(α+γ x^{2})\dot{x}+β x+δ x^{3}=0\), Int J Non-Linear Mech, 15, 449-458, (1980) · Zbl 0453.70015
[146] Coombes, S, Phase locking in networks of synaptically coupled Mckean relaxation oscillators, Physica D, 160, 173-188, (2001) · Zbl 1013.92005
[147] Coombes, S, Neuronal networks with gap junctions: a study of piece-wise linear planar neuron models, SIAM J Appl Dyn Syst, 7, 1101-1129, (2008) · Zbl 1159.92008
[148] Storti, DW; Rand, RH, Dynamics of two strongly coupled relaxation oscillators, SIAM J Appl Math, 46, 56-67, (1986) · Zbl 0589.34043
[149] Somers, D; Kopell, N, Waves and synchrony in networks of oscillators of relaxation and non-relaxation type, Physica D, 89, 169-183, (1995) · Zbl 0900.92021
[150] Aronson, DG; Ermentrout, GB; Kopell, N, Amplitude response of coupled oscillators, Physica D, 41, 403-449, (1990) · Zbl 0703.34047
[151] Kurrer, C, Synchronization and desynchronization of weakly coupled oscillators, Phys Rev E, 56, 3799-3802, (1997)
[152] Sherman, A; Rinzel, J, Rhythmogenic effects of weak electrotonic coupling in neuronal models, Proc Natl Acad Sci USA, 89, 2471-2474, (1992)
[153] Han, SK; Kurrer, C; Kuramoto, Y, Dephasing and bursting in coupled neural oscillators, Phys Rev Lett, 75, 3190-3193, (1995)
[154] Postnov, D; Han, SK; Kook, H, Synchronization of diffusively coupled oscillators near the homoclinic bifurcation, Phys Rev E, 60, 2799-2807, (1999)
[155] Pfeuty, B; Mato, G; Golomb, D; Hansel, D, Electrical synapses and synchrony: the role of intrinsic currents, J Neurosci, 23, 6280-6294, (2003)
[156] Ermentrout, B, Gap junctions destroy persistent states in excitatory networks, Phys Rev E, 74, (2006)
[157] Daido, H; Nakanishi, K, Diffusion-induced inhomogeneity in globally coupled oscillators: swing-by mechanism, Phys Rev Lett, 96, (2006)
[158] Mancilla, JG; Lewis, TJ; Pinto, DJ; Rinzel, J; Connors, BW, Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex, J Neurosci, 27, 2058-2073, (2007)
[159] Pecora, LM; Carroll, TL, Master stability functions for synchronized coupled systems, Phys Rev Lett, 80, 2109-2112, (1998)
[160] Restrepo, J; Ott, E; Hunt, B, Desynchronization waves and localized instabilities in oscillator arrays, Phys Rev Lett, 93, (2004)
[161] Porter MA, Gleeson JP. Dynamical systems on networks: a tutorial. arXiv:1403.7663 (2014). · Zbl 1153.34001
[162] Thul, R; Coombes, S, Understanding cardiac alternans: a piecewise linear modelling framework, Chaos, 20, (2010) · Zbl 1311.92056
[163] Pecora, LM; Sorrentino, F; Hagerstrom, AM; Murphy, TE; Roy, R, Cluster synchronization and isolated desynchronization in complex networks with symmetries, Nat Commun, 5, (2014)
[164] Mirollo, RE; Strogatz, SH, Synchronization of pulse-coupled biological oscillators, SIAM J Appl Math, 50, 1645-1662, (1990) · Zbl 0712.92006
[165] Ernst, U; Pawelzik, K; Geisel, T, Synchronization induced by temporal delays in pulse-coupled oscillators, Phys Rev Lett, 74, 1570-1573, (1995)
[166] Ernst, U; Pawelzik, K; Geisel, T, Delay-induced multistable synchronization of biological oscillators, Phys Rev E, 57, 2150-2162, (1998)
[167] Timme, M; Wolf, F; Geisel, T, Unstable attractors induce perpetual synchronization and desynchronization, Chaos, 13, 377-387, (2003) · Zbl 1080.37547
[168] Ashwin, P; Timme, M, Unstable attractors: existence and robustness in networks of oscillators with delayed pulse coupling, Nonlinearity, 18, 2035-2060, (2005) · Zbl 1084.37061
[169] Broer, H; Efstathiou, K; Subramanian, E, Heteroclinic cycles between unstable attractors, Nonlinearity, 21, 1385-1410, (2008) · Zbl 1153.34001
[170] Kirst, C; Timme, M, From networks of unstable attractors to heteroclinic switching, Phys Rev E, 78, (2008)
[171] Steur, E; Tyukin, I; Nijmeijer, H, Semi-passivity and synchronization of diffusively coupled neuronal oscillators, Physica D, 238, 2119-2128, (2009) · Zbl 1196.37126
[172] Mauroy, A; Sacr, P; Sepulchre, R, Kick synchronization versus diffusive synchronization, 7171-7183, (2012)
[173] Kielblock, H; Kirst, C; Timme, M, Breakdown of order preservation in symmetric oscillator networks with pulse-coupling, Chaos, 21, (2011) · Zbl 1317.34056
[174] Vreeswijk, C, Partial synchronization in populations of pulse-coupled oscillators, Phys Rev E, 54, 5522-5537, (1996)
[175] Vreeswijk, C, Analysis of the asynchronous state in networks of strongly coupled oscillators, Phys Rev Lett, 84, 5110-5113, (2000)
[176] Vreeswijk, C; Hansel, D, Patterns of synchrony in neural networks with spike adaptation, Neural Comput, 13, 959-992, (2001) · Zbl 1004.92011
[177] Bressloff, PC; Coombes, S, Dynamics of strongly-coupled spiking neurons, Neural Comput, 12, 91-129, (2000)
[178] Guckenheimer, J, Isochrons and phaseless sets, J Math Biol, 1, 259-273, (1975) · Zbl 0345.92001
[179] Winfree A. The geometry of biological time. 2nd ed. New York: Springer; 2001. · Zbl 1014.92001
[180] Osinga, HM; Moehlis, J, A continuation method for computing global isochrons, SIAM J Appl Dyn Syst, 9, 1201-1228, (2010) · Zbl 1232.37014
[181] Guillamon, A; Huguet, G, A computational and geometric approach to phase resetting curves and surfaces, SIAM J Appl Dyn Syst, 8, 1005-1042, (2009) · Zbl 1216.34030
[182] Su̧vak, O; Demir, A, Quadratic approximations for the isochrons of oscillators: a general theory, advanced numerical methods, and accurate phase computations, Comput Aided Des, 29, 1215-1228, (2010)
[183] Takeshita, D; Feres, R, Higher order approximation of isochrons, Nonlinearity, 23, 1303-1323, (2010) · Zbl 1192.37113
[184] Mauroy, A; Mezić, I, On the use of Fourier averages to compute the global isochrons of (quasi)periodic dynamics, Chaos, 22, (2012) · Zbl 1319.70024
[185] Wedgwood K. Dynamical systems techniques in the analysis of neural systems. PhD thesis, University of Nottingham; 2013. · Zbl 1197.37018
[186] Hale JK. Ordinary differential equations. New York: Wiley; 1969.
[187] Ermentrout, GB; Kopell, N, Multiple pulse interactions and averaging in systems of coupled neural oscillators, J Math Biol, 29, 195-217, (1991) · Zbl 0718.92004
[188] Medvedev, GS, Synchronization of coupled limit cycles, J Nonlinear Sci, 21, 441-464, (2011) · Zbl 1264.34107
[189] Ashwin, P, Weak coupling of strongly nonlinear, weakly dissipative identical oscillators, Dyn Syst, 10, 2471-2474, (1989)
[190] Ashwin, P; Dangelmayr, G, Reduced dynamics and symmetric solutions for globally coupled weakly dissipative oscillators, Dyn Syst, 20, 333-367, (2005) · Zbl 1086.37041
[191] Lee, WS; Ott, E; Antonsen, TM, Phase and amplitude dynamics in large systems of coupled oscillators: growth heterogeneity, nonlinear frequency shifts, and cluster states, Chaos, 23, (2013) · Zbl 1323.34050
[192] Wedgwood, KCA; Lin, KK; Thul, R; Coombes, S, Phase-amplitude descriptions of neural oscillator models, J Math Neurosci, 3, (2013) · Zbl 1291.92052
[193] Ott, W; Stenlund, M, From limit cycles to strange attractors, Commun Math Phys, 296, 215-249, (2010) · Zbl 1202.37046
[194] Medvedev, GS, Synchronization of coupled stochastic limit cycle oscillators, Phys Lett A, 374, 1712-1720, (2010) · Zbl 1236.34070
[195] Wang, Q; Young, L-S, Strange attractors with one direction of instability, Commun Math Phys, 218, 1-97, (2001) · Zbl 0996.37040
[196] Wang, Q; Young, L-S, From invariant curves to strange attractors, Commun Math Phys, 225, 275-304, (2002) · Zbl 1080.37550
[197] Wang, Q, Strange attractors in periodically-kicked limit cycles and Hopf bifurcations, Commun Math Phys, 240, 509-529, (2003) · Zbl 1078.37027
[198] Lin, KK; Young, L-S, Shear-induced chaos, Nonlinearity, 21, 899-922, (2008) · Zbl 1153.37355
[199] Lin, KK; Young, L-S, Dynamics of periodically kicked oscillators, J Fixed Point Theory Appl, 7, 291-312, (2010) · Zbl 1205.37046
[200] Lin, KK; Wedgwood, KCA; Coombes, S; Young, L-S, Limitations of perturbative techniques in the analysis of rhythms and oscillations, J Math Biol, 66, 139-161, (2013) · Zbl 1256.92006
[201] Brown, E; Moehlis, J; Holmes, P, On the phase reduction and response dynamics of neural oscillator populations, Neural Comput, 16, 671-715, (2004) · Zbl 1054.92006
[202] Rinzel, J; Ermentrout, GB; Koch, C (ed.); Segev, I (ed.), Analysis of neural excitability and oscillations, 135-169, (1989), Cambridge
[203] Galán, RF; Ermentrout, GB; Urban, NN, Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling, Phys Rev Lett, 94, (2005)
[204] Tateno, T; Robinson, HPC, Phase resetting curves and oscillatory stability in interneurons of rat somatosensory cortex, Biophys J, 92, 683-695, (2007)
[205] Netoff, T; Schwemmer, MA; Lewis, TJ; Schultheiss, NW (ed.); Prinz, AA (ed.); Butera, RJ (ed.), Experimentally estimating phase response curves of neurons: theoretical and practical issues, 95-129, (2012), Berlin
[206] Gutkin, BS; Ermentrout, GB; Reyes, AD, Phase-response curves give the responses of neurons to transient inputs, J Neurophysiol, 94, 1623-1635, (2005)
[207] Kotani, K; Yamaguchi, I; Ogawa, Y; Jimbo, Y; Nakao, H; Ermentrout, GB, Adjoint method provides phase response functions for delay-induced oscillations, Phys Rev Lett, 109, (2012)
[208] Novičenko, V; Pyragas, K, Phase reduction of weakly perturbed limit cycle oscillations in time-delay systems, Physica D, 241, 1090-1098, (2012) · Zbl 1255.34069
[209] Govaerts, W; Sautois, B, Computation of the phase response curve: a direct numerical approach, Neural Comput, 18, 817-847, (2006) · Zbl 1087.92001
[210] Ermentrout, B, Type I membranes, phase resetting curves, and synchrony, Neural Comput, 8, 979-1001, (1996)
[211] Ermentrout, GB; Glass, L; Oldeman, BE, The shape of phase-resetting curves in oscillators with a saddle node on an invariant circle bifurcation, Neural Comput, 24, 3111-3125, (2012) · Zbl 1268.92016
[212] Adler, R, A study of locking phenomena in oscillators, Proc IRE, 34, 351-357, (1946)
[213] Ermentrout, GB; Kopell, N, Frequency plateaus in a chain of weakly coupled oscillators, SIAM J Appl Math, 15, 215-237, (1984) · Zbl 0558.34033
[214] Vreeswijk, C; Abbott, LF; Ermentrout, GB, When inhibition not excitation synchronizes neural firing, J Comput Neurosci, 1, 313-321, (1994)
[215] Chow, CC, Phase-locking in weakly heterogeneous neuronal networks, Physica D, 118, 343-370, (1998) · Zbl 1194.35469
[216] Lewis, TJ; Rinzel, J, Dynamics of spiking neurons connected by both inhibitory and electrical coupling, J Comput Neurosci, 14, 283-309, (2003)
[217] Corinto, F; Bonnin, M; Gilli, M, Weakly connected oscillatory network models for associative and dynamic memories, Int J Bifurc Chaos, 17, 4365-4379, (2007) · Zbl 1144.92006
[218] Izhikevich, EM, Phase equations for relaxation oscillators, SIAM J Appl Math, 60, 1789-1805, (2000) · Zbl 1016.92001
[219] Winfree, AT, Biological rhythms and the behaviour of populations of coupled oscillators, J Theor Biol, 16, 15-42, (1967)
[220] Strogatz, S, From Kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143, 1-20, (2000) · Zbl 0983.34022
[221] Acebrón, JA; Bonilla, LL; Vicente, CJP; Ritort, F; Spigler, R, The Kuramoto model: a simple paradigm for synchronization phenomena, Rev Mod Phys, 77, 137-185, (2005)
[222] Karabacak, Ö; Ashwin, P, Heteroclinic ratchets in networks of coupled oscillators, J Nonlinear Sci, 20, 105-129, (2009) · Zbl 1208.34057
[223] Ermentrout, GB, The behaviour of rings of coupled oscillators, J Math Biol, 23, 55-74, (1985) · Zbl 0583.92002
[224] Skardal, PS; Restrepo, JG, Hierarchical synchrony of phase oscillators in modular networks, Phys Rev E, 85, (2012)
[225] Watanabe, S; Strogatz, SH, Constants of motion for superconducting Josephson arrays, Physica D, 74, 197-253, (1994) · Zbl 0812.34043
[226] Kori, H; Kuramoto, Y; Jain, S; Kiss, IZ; Hudson, JL, Clustering in globally coupled oscillators near a Hopf bifurcation: theory and experiments, Phys Rev E, 89, (2014)
[227] Golomb, D; Wang, XJ; Rinzel, J, Synchronization properties of spindle oscillations in a thalamic reticular nucleus model, J Neurophysiol, 72, 1109-1126, (1994)
[228] Orosz, G; Moehlis, J; Ashwin, P, Designing the dynamics of globally coupled oscillators, Prog Theor Phys, 122, 611-630, (2009) · Zbl 1196.34046
[229] Skardal, PS; Ott, E; Restrepo, JG, Cluster synchrony in systems of coupled phase oscillators with higher-order coupling, Phys Rev E, 84, (2011)
[230] Ashwin, P; King, GP; Swift, JW, Three identical oscillators with symmetric coupling, Nonlinearity, 3, 585-601, (1990) · Zbl 0708.58020
[231] Hansel, D; Mato, G; Meunier, C, Clustering and slow switching in globally coupled phase oscillators, Phys Rev E, 48, 3470-3477, (1993)
[232] Ashwin, P; Burylko, O; Maistrenko, Y, Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators, Physica D, 237, 454-466, (2008) · Zbl 1178.34041
[233] Cohen, AH; Holmes, PJ; Rand, RH, The nature of the coupling between segmental oscillators of the spinal lamprey generator, J Math Biol, 13, 345-369, (1982) · Zbl 0476.92003
[234] Kopell, N; Arbib, MA (ed.), Chains of coupled oscillators, 178-183, (1995), Cambridge
[235] Ermentrout, GB; Kleinfeld, D, Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role, Neuron, 29, 33-44, (2001)
[236] Ermentrout, GB, Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators, SIAM J Appl Math, 52, 1665-1687, (1992) · Zbl 0786.45005
[237] Kopell, N; Ermentrout, GB, Phase transitions and other phenomena in chains of coupled oscillators, SIAM J Appl Math, 50, 1014-1052, (1990) · Zbl 0711.34029
[238] Kopell, N; Ermentrout, GB, Symmetry and phaselocking in chains of weakly coupled oscillators, Commun Pure Appl Math, 39, 623-660, (1986) · Zbl 0596.92011
[239] Rubino, D; Robbins, KA; Hatsopoulos, NG, Propagating waves mediate information transfer in the motor cortex, Nat Neurosci, 9, 1549-1557, (2006)
[240] Crook, SM; Ermentrout, GB; Vanier, MC; Bower, JM, The role of axonal delay in the synchronization of networks of coupled cortical oscillators, J Comput Neurosci, 4, 161-172, (1997) · Zbl 0893.92004
[241] Bressloff, PC; Coombes, S, Physics of the extended neuron, Int J Mod Phys B, 11, 2343-2392, (1997)
[242] Battogtokh, D, Phase turbulence in the nonlocally coupled phase equation, Phys Lett A, 299, 558-564, (2002) · Zbl 0997.92009
[243] Bick, C; Timme, M; Paulikat, D; Rathlev, D; Ashwin, P, Chaos in symmetric phase oscillator networks, Phys Rev Lett, 107, (2011)
[244] Kori, H; Kuramoto, Y, Slow switching in globally coupled oscillators: robustness and occurence through delayed coupling, Phys Rev E, 63, (2001)
[245] Kori, H; Kuramoto, Y, Slow switching in a population of delayed pulse-coupled oscillators, Phys Rev E, 68, (2003)
[246] Kiss, IZ; Rusin, CG; Kori, H; Hudson, JL, Engineering complex dynamical structures: sequential patterns and desynchronization, Science, 316, 1886, (2007) · Zbl 1226.93068
[247] Ashwin, P; Postlethwaite, C, On designing heteroclinic networks from graphs, Physica D, 265, 26-39, (2013) · Zbl 1417.37098
[248] Rabinovich, M; Huerta, R; Varona, P, Heteroclinic synchronization: ultrasubharmonic locking, Phys Rev Lett, 96, (2006)
[249] Rabinovich, MI; Muezzinoglu, MK, Nonlinear dynamics of the brain: emotion and cognition, Phys Usp, 53, 357-372, (2010)
[250] Rabinovich, MI; Afraimovich, VS; Bick, C; Varona, P, Information flow dynamics in the brain, Phys Life Rev, 9, 51-73, (2012)
[251] Ashwin, P; Karabacak, Ö; Nowotny, T, Criteria for robustness of heteroclinic cycles in neural microcircuits, J Math Neurosci, 1, (2011) · Zbl 1259.37054
[252] Ashwin, P; Orosz, G; Wordsworth, J; Townley, S, Dynamics on networks of cluster states for globally coupled phase oscillators, SIAM J Appl Dyn Syst, 6, 728-758, (2007) · Zbl 1167.34326
[253] Ashwin, P; Borresen, J, Encoding via conjugate symmetries of slow oscillations for globally coupled oscillators, Phys Rev E, 70, (2004)
[254] Ashwin, P; Borresen, J, Discrete computation using a perturbed heteroclinic network, Phys Lett A, 347, 208-214, (2005) · Zbl 1195.34053
[255] Wordsworth, J; Ashwin, P, Spatiotemporal coding of inputs for a system of globally coupled phase oscillators, Phys Rev E, 78, (2008)
[256] Hofbauer, J; Sigmund, K, Evolutionary game dynamics, Bull Am Math Soc, 40, 479-519, (2003) · Zbl 1049.91025
[257] May, RM; Leonard, WJ, Nonlinear aspects of competition between three species, SIAM J Appl Math, 29, 243-253, (1975) · Zbl 0314.92008
[258] Neves, FS; Timme, M, Computation by switching in complex networks of states, Phys Rev Lett, 109, (2012)
[259] Ashwin, P; Postlethwaite, C, Designing heteroclinic and excitable networks in phase space using two populations of coupled cells, J Nonlinear Sci, (2015) · Zbl 1362.37058
[260] Kaneko, K; Tsuda, I, Focus issue on chaotic itinerancy, Chaos, 13, 926-1164, (2003)
[261] Kaneko, K, On the strength of attractors in a high-dimensional system: Milnor attractor network, robust global attraction, and noise-induced selection, Physica D, 124, 322-344, (1998) · Zbl 1040.37502
[262] Kuznetsov, AS; Kurths, J, Stable heteroclinic cycles for ensembles of chaotic oscillators, Phys Rev E, 66, (2002)
[263] Tsuda, I, Hypotheses on the functional roles of chaotic transitory dynamics, Chaos, 19, (2009) · Zbl 1311.92053
[264] Stone, E; Holmes, P, Random perturbations of heteroclinic attractors, SIAM J Appl Math, 50, 726-743, (1990) · Zbl 0702.58038
[265] Mainen, Z; Sejnowski, T, Reliability of spike timing in neocortical neurons, Science, 268, 1503-1506, (1995)
[266] Taillefumier, T; Magnasco, M, A transition to sharp timing in stochastic leaky integrate-and-fire neurons driven by frozen noisy input, Neural Comput, 26, 819-859, (2014) · Zbl 1415.92062
[267] Ermentrout, GB; Galán, R; Roberto, F; Urban, NN, Reliability, synchrony and noise, Trends Neurosci, 31, 428-434, (2008)
[268] Goldobin, DS; Pikovsky, A, Synchronization and desynchronization of self-sustained oscillators by common noise, Phys Rev E, 71, (2005)
[269] Nakao, H; Arai, K; Kawamura, Y, Noise-induced synchronization and clustering in ensembles of uncoupled limit-cycle oscillators, Phys Rev Lett, 98, (2007)
[270] Lai, YM; Porter, MA, Noise-induced synchronization, desynchronization, and clustering in globally coupled nonidentical oscillators, Phys Rev E, 88, (2013)
[271] Kawamura, Y, Collective phase dynamics of globally coupled oscillators: noise-induced anti-phase synchronization, Physica D, 270, 20-29, (2014) · Zbl 1292.34036
[272] Kawamura, Y; Nakao, H; Kuramoto, Y, Noise-induced turbulence in nonlocally coupled oscillators, Phys Rev E, 75, (2007)
[273] Lindner, B, Effects of noise in excitable systems, Phys Rep, 392, 321-424, (2004)
[274] Schwabedal, JTC; Pikovsky, A, Phase description of stochastic oscillations, Phys Rev Lett, 110, (2013)
[275] Ly, C; Ermentrout, GB, Analytic approximations of statistical quantities and response of noisy oscillators, Physica D, 240, 719-731, (2011) · Zbl 1210.82050
[276] Nakao, H; Teramae, J-N; Goldobin, DS; Kuramoto, Y, Effective long-time phase dynamics of limit-cycle oscillators driven by weak colored noise, Chaos, 20, (2010) · Zbl 1311.34086
[277] Moehlis, J, Improving the precision of noisy oscillators, Physica D, 272, 8-17, (2014) · Zbl 1288.34052
[278] Kuramoto, Y, Collective synchronization of pulse-coupled oscillators and excitable units, Physica D, 50, 15-30, (1991) · Zbl 0736.92001
[279] Medvedev, GS; Zhuravytska, S, The geometry of spontaneous spiking in neuronal networks, J Nonlinear Sci, 22, 689-725, (2012) · Zbl 1257.34036
[280] Newhall, K; Kovačič, G; Kramer, P; Cai, D, Cascade-induced synchrony in stochastically driven neuronal networks, Phys Rev E, 82, (2010)
[281] Ly, C, Dynamics of coupled noisy neural oscillators with heterogeneous phase resetting curves, SIAM J Appl Dyn Syst, 13, 1733-1755, (2014) · Zbl 1326.37055
[282] Abouzeid, A; Ermentrout, B, Correlation transfer in stochastically driven neural oscillators over long and short time scales, Phys Rev E, 84, (2011)
[283] Bressloff, PC; Lai, Y-M, Stochastic synchronization of neuronal populations with intrinsic and extrinsic noise, J Math Neurosci, 1, (2011) · Zbl 1259.92004
[284] Burton, SD; Ermentrout, GB; Urban, NN, Intrinsic heterogeneity in oscillatory dynamics limits correlation-induced neural synchronization, J Neurophysiol, 108, 2115-2133, (2012)
[285] Yoshimura, K; Arai, K, Phase reduction of stochastic limit cycle oscillators, Phys Rev Lett, 101, (2008)
[286] Yoshimura, K; Schuster, HG (ed.), Phase reduction of stochastic limit-cycle oscillators, 59-90, (2010), Weinheim · Zbl 1201.37110
[287] Teramae, J; Nakao, H; Ermentrout, GB, Stochastic phase reduction for a general class of noisy limit cycle oscillators, Phys Rev Lett, 102, (2009)
[288] Goldobin, DS; Teramae, J-N; Nakao, H; Ermentrout, GB, Dynamics of limit-cycle oscillators subject to general noise, Phys Rev Lett, 105, (2010)
[289] Nykamp, DQ; Tranchina, D, A population density approach that facilitates large-scale modeling of neural networks: extension to slow inhibitory synapses, Neural Comput, 13, 511-546, (2001) · Zbl 1052.92016
[290] Pazó, D; Montbrió, E, Low-dimensional dynamics of populations of pulse-coupled oscillators, Phys Rev X, 4, (2014)
[291] Ariaratnam, J; Strogatz, S, Phase diagram for the winfree model of coupled nonlinear oscillators, Phys Rev Lett, 86, 4278-4281, (2001)
[292] Luke, TB; Barreto, E; So, P, Complete classification of the macroscopic behaviour of a heterogeneous network of theta neurons, Neural Comput, 25, 3207-3234, (2013)
[293] Montbrió, E; Pazó, D; Roxin, A, Macroscopic description for networks of spiking neurons, Phys Rev X, 5, (2015)
[294] Laing, CR, Exact neural fields incorporating gap junctions, SIAM J Appl Dyn Syst, 14, 1899-1929, (2015) · Zbl 1369.92020
[295] Abrams, D; Strogatz, S, Chimera states for coupled oscillators, Phys Rev Lett, 93, (2004)
[296] Abrams, D; Mirollo, R; Strogatz, S; Wiley, D, Solvable model for Chimera states of coupled oscillators, Phys Rev Lett, 101, (2008)
[297] Laing, CR, The dynamics of Chimera states in heterogeneous Kuramoto networks, Physica D, 238, 1569-1588, (2009) · Zbl 1185.34042
[298] Panaggio, MJ; Abrams, DM, Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity, 28, 67-87, (2015)
[299] Kuramoto, Y; Battogtokh, D, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom Complex Syst, 5, 380-385, (2002)
[300] Kuramoto, Y, Reduction methods applied to non-locally coupled oscillator systems, 209-227, (2003), Bristol · Zbl 1330.35215
[301] Watanabe, S; Strogatz, SH, Constants of motion for superconducting Josephson arrays, Physica D, 74, 197-253, (1994) · Zbl 0812.34043
[302] Wolfrum, M; Omel’chenko, OE, Chimera states are chaotic transients, Phys Rev E, 84, (2011)
[303] Martens, EA, Bistable Chimera attractors on a triangular network of oscillator populations, Phys Rev E, 82, (2010)
[304] Shima, S-I; Kuramoto, Y, Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators, Phys Rev E, 69, (2004)
[305] Ashwin, P; Burylko, O, Weak chimeras in minimal networks of coupled phase oscillators, Chaos, 25, (2015) · Zbl 1345.34052
[306] Tinsley, MR; Nkomo, S; Showalter, K, Chimera and phase-cluster states in populations of coupled chemical oscillators, Nat Phys, 8, 662-665, (2012)
[307] Martens, EA; Thutupalli, S; Fourrière, A; Hallatschek, O, Chimera states in mechanical oscillator networks, Proc Natl Acad Sci USA, 110, 10563-10567, (2013)
[308] Omel’chenko, I; Maistrenko, Y; Hövel, P; Schöll, E, Loss of coherence in dynamical networks: spatial chaos and Chimera states, Phys Rev Lett, 109, (2012)
[309] Sethia, GC; Sen, A, Chimera states: the existence criteria revisited, Phys Rev Lett, 112, (2014)
[310] Olmi, S; Navas, A; Boccaletti, S; Torcini, A, Hysteretic transitions in the Kuramoto model with inertia, Phys Rev E, 90, (2014)
[311] Sieber, J; Omel’chenko, O; Wolfrum, M, Controlling unstable chaos: stabilizing Chimera states by feedback, Phys Rev Lett, 112, (2014)
[312] Maistrenko, Y; Vasylenko, A; Sudakov, O; Levchenko, R; Maistrenko, V, Cascades of multi-headed Chimera states for coupled phase oscillators, Int J Bifurc Chaos, 24, (2014) · Zbl 1300.34082
[313] Xie, J; Knobloch, E, Multicluster and traveling Chimera states in nonlocal phase-coupled oscillators, Phys Rev E, 90, (2014)
[314] Olmi, S; Politi, A; Torcini, A, Collective chaos in pulse-coupled neural networks, Europhys Lett, 92, (2010)
[315] Ma, R; Wang, J; Liu, Z, Robust features of Chimera states and the implementation of alternating Chimera states, Europhys Lett, 91, (2010)
[316] Lysyansky, B; Popovych, OV; Tass, P, Multi-frequency activation of neuronal networks by coordinated reset stimulation, Interface Focus, 1, 75-85, (2010)
[317] Hlinka, J; Coombes, S, Using computational models to relate structural and functional brain connectivity, Eur J Neurosci, 36, 2137-2145, (2012) · Zbl 1307.74044
[318] Arsiwalla, XD; Zucca, R; Betella, A; Martinez, E; Dalmazzo, D; Omedas, P; Deco, G; Verschure, PFMJ, Network dynamics with brainx3: a large-scale simulation of the human brain network with real-time interaction, Front Neuroinform, 9, (2015)
[319] Nicosia, V; Nicosia, V; Valencia, M; Valencia, M; Chavez, M; Chavez, M; Díaz-Guilera, A; Díaz-Guilera, A; Latora, V, Remote synchronization reveals network symmetries and functional modules, Phys Rev Lett, 110, (2013)
[320] Daffertshofer, A; Wijk, BCM, On the influence of amplitude on the connectivity between phases, Front Neuroinform, 5, (2011)
[321] Nadim, F; Jaeger, D (ed.); Jung, R (ed.), Invertebrate pattern generation: overview, (2014), Heidelberg
[322] Collins, JJ; Richmond, SA, Hard-wired central pattern generators for quadrupedal locomotion, Biol Cybern, 71, 375-385, (1994) · Zbl 0800.92086
[323] Sherwood, WE; Harris-Warrick, R; Guckenheimer, J, Synaptic patterning of left-right alternation in a computational model of the rodent hindlimb central pattern generator, J Comput Neurosci, 30, 323-360, (2010)
[324] Sakurai, A; Newcomb, J; Lillvis, J; Katz, P, Different roles for homologous interneurons in species exhibiting similar rhythmic behaviors, Curr Biol, 21, 1036-1043, (2011)
[325] Bal, T; Nagy, F; Moulins, M, The pyloric central pattern generator in crustacea: a set of conditional neural oscillators, J Comp Physiol, 163, 715-727, (1988)
[326] Cohen AH, Rossignol S, Grillner S, editors. Neural control of rhythmic movements in vertebrates. New York: Wiley-Blackwell; 1988.
[327] Marder, E; Bucher, D, Central pattern generators and the control of rhythmic movements, Curr Biol, 11, 986-996, (2001)
[328] Hooper, SL, Central pattern generators, (2001), New York
[329] Ljspeert, AJ, Central pattern generators for locomotion control in animals and robots: a review, Neural Netw, 21, 642-653, (2008)
[330] Crespi, A; Karakasiliotis, K; Guignard, A; Ljspeert, AJ, Salamandra robotica II: an amphibious robot to study salamander-like swimming and walking gaits, IEEE Trans Robot, 29, 308-320, (2013)
[331] Collins, JJ; Stewart, IN, Coupled nonlinear oscillators and the symmetries of animal gaits, J Nonlinear Sci, 3, 349-392, (1993) · Zbl 0808.92012
[332] Golubitsky, M; Stewart, I; Buono, P-L; Collins, JJ, Symmetry in locomotor central pattern generators and animal gaits, Nature, 401, 693-695, (1999)
[333] Shilnikov, A; Gordon, R; Belykh, I, Polyrhythmic synchronization in bursting networking motifs, Chaos, 18, (2008)
[334] Wojcik, J; Schwabedal, J; Clewley, R; Shilnikov, AL, Key bifurcations of bursting polyrhythms in 3-cell central pattern generators, PLoS ONE, 9, (2014)
[335] Brascamp, JW; Klink, PC; Levelt, WJM, The ‘laws’ of binocular rivalry: 50 years of levelt’s propositions, Vis Res, 109, 20-37, (2015)
[336] Shpiro, A; Curtu, R; Rinzel, J; Rubin, N, Dynamical characteristics common to neuronal competition models, J Neurophysiol, 97, 462-473, (2007)
[337] Blake, R, A neural theory of binocular rivalry, Psychol Rev, 96, 145-167, (1989)
[338] Laing, C; Chow, C, A spiking neuron model for binocular rivalry, J Comput Neurosci, 12, 39-53, (2002)
[339] Wilson, HR, Minimal physiological conditions for binocular rivalry and rivalry memory, Vis Res, 47, 2741-2750, (2007)
[340] Diekman, CO; Golubitsky, M, Network symmetry and binocular rivalry experiments, J Math Neurosci, 4, (2014) · Zbl 1321.92044
[341] Ashwin, P; Lavric, A, A low-dimensional model of binocular rivalry using winnerless competition, Physica D, 239, 529-536, (2010) · Zbl 1194.91167
[342] Mintchev, SM; Young, L-S, Self-organization in predominantly feedforward oscillator chains, Chaos, 19, (2009) · Zbl 1311.34085
[343] Lanford, OE; Mintchev, SM, Stability of a family of travelling wave solutions in a feedforward chain of phase oscillators, Nonlinearity, 28, 237-262, (2015) · Zbl 1316.34038
[344] Glass L, Mackey MC. From clocks to chaos: the rythms of life. Princeton: Princeton University Press; 1988.
[345] Payeur, A; Maler, L; Longtin, A, Oscillatorylike behavior in feedforward neuronal networks, Phys Rev E, 92, (2015)
[346] McCullen, NJ; Mullin, T; Golubitsky, M, Sensitive signal detection using a feed-forward oscillator network, Phys Rev Lett, 98, (2007)
[347] Golubitsky, M; Postlethwaite, C, Feed-forward networks, center manifolds, and forcing, Discrete Contin Dyn Syst, 32, 2913-2935, (2012) · Zbl 1257.34025
[348] Laudanski, J; Coombes, S; Palmer, AR; Summer, CJ, Mode-locked spike trains in responses of ventral cochlear nucleus chopper and onset neurons to periodic stimuli, J Neurophysiol, 103, 1226-1237, (2010)
[349] Lerud, KD; Almonte, FV; Kim, JC; Large, EW, Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals, Hear Res, 308, 41-49, (2014)
[350] Daffertshofer, A; Wijk, BCM; Rabinovich, MI (ed.); Friston, KJ (ed.); Varona, P (ed.), Transient motor behavior and synchronization in the cortex, 233-259, (2012), Cambridge
[351] Cartwright, JHE; González, DL; Piro, O, Universality in three-frequency resonances, Phys Rev E, 59, 2902-2906, (1999)
[352] Azad, AK; Ashwin, P, Within-burst synchrony changes for coupled elliptic bursters, SIAM J Appl Dyn Syst, 9, 261-281, (2010) · Zbl 1195.37032
[353] Segev, R; Shapira, Y; Benveniste, M; Ben-Jacob, E, Observations and modeling of synchronized bursting in two-dimensional neural networks, Phys Rev E, 64, (2001)
[354] Nakada, K; Miura, K; Hayashi, H, Burst synchronization and chaotic phenomena in two strongly coupled resonate-and-fire neurons, Int J Bifurc Chaos, 18, 1249, (2008) · Zbl 1147.34329
[355] Zhou, C; Kurths, J, Spatiotemporal coherence resonance of phase synchronization in weakly coupled chaotic oscillators, Phys Rev E, 65, (2002) · Zbl 1244.34059
[356] So, P; Barreto, E, Generating macroscopic chaos in a network of globally coupled phase oscillators, Chaos, 21, (2011) · Zbl 1317.34066
[357] So, P; Luke, TB; Barreto, E, Networks of theta neurons with time-varying excitability: macroscopic chaos, multistability, and final-state uncertainty, Physica D, 267, 16-26, (2014) · Zbl 1285.92011
[358] Tiesinga, PHE; Fellous, J-M; Sejnowski, TJ, Attractor reliability reveals deterministic structure in neuronal spike trains, Neural Comput, 14, 1629-1650, (2002) · Zbl 0999.92010
[359] Goldobin, D; Pikovsky, A, Antireliability of noise-driven neurons, Phys Rev E, 73, (2006) · Zbl 1244.92007
[360] Lin, KK; Shea-Brown, E; Young, L-S, Reliability of coupled oscillators, J Nonlinear Sci, 19, 497-545, (2009) · Zbl 1194.34062
[361] Ichinose, N; Aihara, K; Judd, K, Extending the concept of isochrons from oscillatory to excitable systems for modelling an excitable neuron, Int J Bifurc Chaos, 8, 2375-2385, (1998) · Zbl 0935.92012
[362] Rabinovitch, A; Rogachevskii, I, Threshold, excitability and isochrons in the bonhoeffer-van der Pol system, Chaos, 9, 880-886, (1999) · Zbl 1070.92503
[363] Wilson, D; Moehlis, J, Extending phase reduction to excitable media: theory and applications, SIAM Rev, 57, 201-222, (2015) · Zbl 1351.49004
[364] Schwemmer, M; Lewis, TJ, The robustness of phase-locking in neurons with dendro-dendritic electrical coupling, J Math Biol, 68, 303-340, (2014) · Zbl 1402.92117
[365] Amzica, F; Steriade, M, Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex, J Neurosci, 20, 6648-6665, (2000)
[366] Lee, S-H; Dan, Y, Neuromodulation of brain states, Neuron, 76, 209-222, (2012)
[367] Stiefel, KM; Gutkin, BS; Sejnowski, TJ, The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons, J Comput Neurosci, 26, 289-301, (2009)
[368] Vladimirski, BB; Tabak, J; O’Donovan, MJ; Rinzel, J, Episodic activity in a heterogeneous excitatory network, from spiking neurons to Mean field, J Comput Neurosci, 25, 39-63, (2008) · Zbl 1412.92005
[369] Tsubo, Y; Teramae, J-N; Fukai, T, Synchronization of excitatory neurons with strongly heterogeneous phase responses, Phys Rev Lett, 99, (2007)
[370] Moon, S; Ghanem, R; Kevrekidis, I, Coarse graining the dynamics of coupled oscillators, Phys Rev Lett, 96, (2006)
[371] Holt DF. Handbook of computational group theory. London: Chapman & Hall; 2005. (Discrete mathematics and its applications).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.