×

zbMATH — the first resource for mathematics

Parametrizations of density matrices. (English) Zbl 1356.81244
Summary: This article gives a brief overview of some recent progress in the characterization and parametrization of density matrices of finite dimensional systems. We discuss in some detail the Bloch-vector and Jarlskog parametrizations and mention briefly the coset parametrization. As applications of the Bloch parametrization we discuss the trace invariants for the case of time dependent Hamiltonians and in some detail the dynamics of three-level systems. Furthermore, the Bloch vector of two-qubit systems as well as the use of the polarization operator basis is indicated. As the main application of the Jarlskog parametrization we construct density matrices for composite systems. In addition, some recent related articles are mentioned without further discussion.

MSC:
81V80 Quantum optics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/RevModPhys.29.74 · Zbl 0078.19506
[2] DOI: 10.1103/PhysRevA.17.1249
[3] DOI: 10.1016/S0375-9601(03)00941-1 · Zbl 1052.81117
[4] DOI: 10.1103/PhysRevA.68.062322
[5] DOI: 10.1016/0375-9601(80)90205-4
[6] DOI: 10.1103/PhysRevLett.47.838
[7] DOI: 10.1103/PhysRevA.26.3713
[8] DOI: 10.1103/PhysRevA.25.2168
[9] DOI: 10.1103/PhysRevA.32.2824
[10] DOI: 10.1103/RevModPhys.55.855
[11] DOI: 10.1103/PhysRevA.52.4396
[12] DOI: 10.1119/1.18334 · Zbl 1219.81035
[13] DOI: 10.1103/PhysRevA.64.052312
[14] DOI: 10.1016/S0030-4018(01)01645-5
[15] DOI: 10.1103/PhysRevA.67.032307
[16] DOI: 10.1103/PhysRevA.67.052305
[17] DOI: 10.1103/PhysRevA.69.012311
[18] DOI: 10.1103/PhysRevA.76.052107 · Zbl 1255.81110
[19] DOI: 10.1088/0305-4470/39/20/019 · Zbl 1098.81022
[20] DOI: 10.1088/1751-8113/41/23/235303 · Zbl 1140.81321
[21] Blum K, Density Matrix Theory and Applications (1996)
[22] DOI: 10.1063/1.2038607 · Zbl 1111.15027
[23] DOI: 10.1142/S0219887806001144 · Zbl 1093.68040
[24] DOI: 10.1063/1.2159069 · Zbl 1111.81076
[25] DOI: 10.1088/1751-8113/43/38/385306 · Zbl 1198.81058
[26] DOI: 10.1103/RevModPhys.81.865 · Zbl 1205.81012
[27] DOI: 10.1016/j.physrep.2009.02.004
[28] DOI: 10.1134/S0030400X0709010X
[29] DOI: 10.1142/S1230161208000274 · Zbl 1188.81040
[30] DOI: 10.1088/0305-4470/35/48/316 · Zbl 1047.22012
[31] DOI: 10.1016/j.geomphys.2004.03.003 · Zbl 1069.22012
[32] DOI: 10.1103/PhysRevA.74.022323
[33] DOI: 10.1103/PhysRevA.75.012323
[34] DOI: 10.1103/PhysRevA.78.030301
[35] DOI: 10.1088/0305-4470/36/11/309 · Zbl 1057.15012
[36] DOI: 10.1088/0305-4470/38/12/008 · Zbl 1065.81024
[37] Blanchard P, In Progress in Mathematical Physics (2003)
[38] Gilmore R, Lie Groups, Lie Algebras, and Some of Their Applications (1974)
[39] DOI: 10.1007/BF01883625
[40] DOI: 10.1142/S1230161208000109 · Zbl 1145.81015
[41] DOI: 10.1103/PhysRevA.17.1257
[42] DOI: 10.1103/PhysRevA.27.632
[43] DOI: 10.1103/PhysRevA.34.29
[44] DOI: 10.1103/PhysRevA.30.3097
[45] DOI: 10.1103/PhysRevA.32.2776
[46] DOI: 10.1103/PhysRevA.31.1299
[47] DOI: 10.1103/PhysRevA.33.3358
[48] Alicki R, Lecture Notes in Physics 717 (2007)
[49] DOI: 10.1103/PhysRevA.34.662
[50] DOI: 10.1063/1.1571221 · Zbl 1062.82033
[51] DOI: 10.1088/0305-4470/37/4/022 · Zbl 1057.81067
[52] DOI: 10.1103/PhysRevA.78.042108 · Zbl 1255.81042
[53] DOI: 10.1088/0305-4470/39/36/012 · Zbl 1097.81018
[54] DOI: 10.1063/1.2982276 · Zbl 1152.81558
[55] DOI: 10.1088/1751-8113/42/6/065305 · Zbl 1156.81346
[56] DOI: 10.1016/S0375-9601(01)00455-8 · Zbl 0971.81001
[57] DOI: 10.1103/PhysRevA.81.062306
[58] Reed M, Methods of Modern Mathematical Physics II: Fourier Analysis, Self Adjointness (1975) · Zbl 0308.47002
[59] Dattoli G, Riv. Nuovo Cimento 11 pp 1– (1988)
[60] Kuna M, Solving the von Neumann Equation with Time-dependent Hamiltonian. Part I: Method. (2008)
[61] DOI: 10.1088/0022-3700/18/3/017
[62] DOI: 10.1103/PhysRevLett.77.1413 · Zbl 0947.81003
[63] DOI: 10.1016/S0375-9601(96)00706-2 · Zbl 1037.81501
[64] Biedenharn LC, Angular Momentum in Quantum Physics: Theory and Application (1981)
[65] Varshalovich DA, Quantum Theory of Angular Momentum (1988)
[66] Fujii K, Comment on ”A Recursive Parametrisation of Unitary Matrices”. (2005)
[67] Varadarajan VS, Graduate Texts in Mathematics 102, 2. ed. (1984)
[68] DOI: 10.1103/PhysRevA.76.032308
[69] DOI: 10.1103/PhysRevA.68.042312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.