×

zbMATH — the first resource for mathematics

A spectral-homotopy analysis method for heat transfer flow of a third grade fluid between parallel plates. (English) Zbl 1356.80073
Summary: Purpose
- The purpose of this paper is to study the steady laminar flow of a pressure driven third-grade fluid with heat transfer in a horizontal channel. The study serves two purposes: to correct the inaccurate results presented in Siddiqui et al., where the homotopy perturbation method was used, and to demonstrate the computational efficiency and accuracy of the spectral-homotopy analysis methods (SHAM and MSHAM) in solving problems that arise in fluid mechanics.
Design/methodology/approach
- Exact and approximate analytical series solutions of the non-linear equations that govern the flow of a steady laminar flow of a third grade fluid through a horizontal channel are constructed using the homotopy analysis method and two new modifications of this method. These solutions are compared to the full numerical results. A new method for calculating the optimum value of the embedded auxiliary parameter is proposed.
Findings
- The ”standard” HAM and the two modifications of the HAM (the SHAM and the MSHAM) lead to faster convergence when compared to the homotopy perturbation method. The paper shows that when the same initial approximation is used, the HAM and the SHAM give identical results. Nonetheless, the advantage of the SHAM is that it eliminates the restriction of searching for solutions to the nonlinear equations in terms of prescribed solution forms that conform to the rule of solution expression and the rule of coefficient ergodicity. In addition, an alternative and more efficient implementation of the SHAM (referred to as the MSHAM) converges much faster, and for all parameter values.
Research limitations/implications
- The spectral modification of the homotopy analysis method is a new procedure that has been shown to work efficiently for fluid flow problems in bounded domains. It however remains to be generalized and verified for more complicated nonlinear problems.
Originality/value
- The spectral-HAM has already been proposed and implemented by the authors in a recent paper. This paper serves the purpose of verifying and demonstrating the utility of the new spectral modification of the HAM in solving problems that arise in fluid mechanics. The MSHAM is a further modification of the SHAM to speed up converge and to allow for convergence for a much wider range of system parameter values. The utility of these methods has not been tested and verified for systems of nonlinear equations. For this reason as much emphasis has been placed on proving the reliability and validity of the solution techniques as on the physics of the problem.
Reviewer: Reviewer (Berlin)

MSC:
80M25 Other numerical methods (thermodynamics) (MSC2010)
65L99 Numerical methods for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adomian, G. (1991), ”A review of the decomposition method and some recent results for nonlinear equations”, Comp. Math. Appl., Vol. 21, pp. 101-27. , · Zbl 0732.35003 · doi:10.1108/09615531211188766
[2] Akçay, M. and Yukselen, M.A. (1999), ”Drag reduction of a non-Newtonian fluid by fluid injection on a moving wall”, Arch. Appl. Mech., Vol. 69 No. 3, pp. 215-25. , · Zbl 1356.80073 · doi:10.1108/09615531211188766
[3] Ariel, P.D. (2003), ”Flow of a third grade fluid through a porous flat channel”, Int. J. Eng. Sci., Vol. 41, pp. 1267-85. , · Zbl 1211.76108 · doi:10.1108/09615531211188766
[4] Asghar, S., Mohyuddin, M.R., Hayat, T. and Siddiqui, A.M. (2004), ”The flow of a non-Newtonian fluid induced due to the oscillations of a porous plate”, Math. Prob. Eng., Vol. 2, pp. 133-43, available at: . · Zbl 1075.76004 · doi:10.1108/09615531211188766
[5] Benharbit, A.M. and Siddiqui, A.M. (1992), ”Certain solutions of the equations of the planar motion of a second grade fluid for steady and unsteady cases”, Acta Mech., Vol. 94 Nos 1/2, pp. 85-96. , · Zbl 0749.76002 · doi:10.1108/09615531211188766
[6] Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T.A. (1988), Spectral Methods in Fluid Dynamics, Springer, Berlin. · Zbl 0658.76001
[7] Dinarvand, S. and Rashidi, M.M. (2010), ”A reliable treatment of a homotopy analysis method for two-dimensional viscous flow in arectangular domain bounded by two moving porous walls”, Nonlin. Anal. Real World Appl., No. 3, pp. 1502-12. , · Zbl 1189.35249 · doi:10.1108/09615531211188766
[8] Don, W.S. and Solomonoff, A. (1995), ”Accuracy and speed in computing the Chebyshev collocation derivative”, SIAM. J. Sci. Comput., Vol. 16 No. 6, pp. 1253-68. , · Zbl 0840.65010 · doi:10.1108/09615531211188766
[9] Dunn, J.E. and Rajagopal, K.R. (1995), ”Fluids of differential type: critical review and thermodynamic analysis”, Int. J. Eng. Sci., Vol. 33 No. 5, pp. 689-729. , · Zbl 0899.76062 · doi:10.1108/09615531211188766
[10] Ellahi, R. and Afzal, S. (2009), ”Effects of variable viscosity in a third grade fluid with porous medium: an analytic solution”, Commun. Nonlin. Sci. Numer. Simul., Vol. 14 No. 5, pp. 2056-72. , · Zbl 1221.76015 · doi:10.1108/09615531211188766
[11] Fakhar, K., Xu, Z. and Yi, C. (2008), ”Exact solutions of a third grade fluid flow on a porous plate”, Appl. Math. Comput., Vol. 202, pp. 376-82. , · Zbl 1142.76006 · doi:10.1108/09615531211188766
[12] Fosdick, R.L. and Rajagopal, K.R. (1980), ”Thermodynamics and stability of fluids of third grade”, Proc. R. Soc. Lond. A, Vol. 369, pp. 351-77. , · Zbl 0441.76002 · doi:10.1108/09615531211188766
[13] Guttamann, A.J. (1989), ”Asymptotic analysis of power series expansions”, in Domb, C. and Lebowitz, J.K. (Eds), Phase Transitions and Critical Phenomena, Academic Press, New York, NY, pp. 1-234.
[14] Hayat, T., Ahmed, N. and Sajid, M. (2008a), ”Analytic solution for MHD flow of a third order fluid in a porous channel”, J. Comput. Appl. Math., Vol. 214, pp. 572-82. , · Zbl 1144.76059 · doi:10.1108/09615531211188766
[15] Hayat, T., Asghar, S. and Siddiqui, A.M. (1998), ”Periodic unsteady flows of a non-Newtonian fluid”, Acta Mech., Vol. 131 Nos 3/4, pp. 169-75. , · Zbl 0939.76002 · doi:10.1108/09615531211188766
[16] Hayat, T., Ellahi, R. and Mahomed, F.M. (2008b), ”Exact solutions for thin film flow of a third grade fluid down an inclined plane”, Chaos Solit. Fract., Vol. 38 No. 5, pp. 1336-41. , · Zbl 1154.76319 · doi:10.1108/09615531211188766
[17] Hayat, T., Ellahi, R., Ariel, P.D. and Asghar, S. (2006), ”Homotopy solutions for the channel flow of a third grade fluid”, Nonlin. Dyn., Vol. 45, pp. 55-64. , · Zbl 1100.76005 · doi:10.1108/09615531211188766
[18] He, J.H. (1999), ”Homotopy perturbation technique”, Comput. Methods Appl. Mech. Eng., Vol. 178, pp. 257-62. , · Zbl 0956.70017 · doi:10.1108/09615531211188766
[19] He, J.H. (2000), ”A coupling method of a homotopy technique and a perturbation technique for non-linear problems”, Int. J. Nonlin. Mech., Vol. 35, pp. 37-43. , · Zbl 1068.74618 · doi:10.1108/09615531211188766
[20] Holmes, G.C. (2002), ”The use of hyperbolic cosines in solving cubic polynomials”, The Mathematical Gazette, Vol. 86, pp. 473-7. · Zbl 1356.80073 · doi:10.1108/09615531211188766
[21] Liao, S.J. (2005), ”Comparison between the homotopy analysis method and the homotopy perturbation method”, Appl. Math. Comput., Vol. 169, pp. 1186-94. , · Zbl 1082.65534 · doi:10.1108/09615531211188766
[22] Liao, S.J. (2009), ”Notes on the homotopy analysis method: some definitions and theories”, Commun. Nonlin. Sci. Numer. Simul., Vol. 14, pp. 983-97. , · Zbl 1221.65126 · doi:10.1108/09615531211188766
[23] Lipscombe, T.C. (2010), ”Comment on application of the homotopy method for analytical solution of non-Newtonian channel flows”, Physica Scripta, Vol. 81 No. 3, p. 037001. , · Zbl 1188.76189 · doi:10.1108/09615531211188766
[24] Liu, C.-S. (2010), ”The essence of the homotopy analysis method”, Appl. Math. Comput., Vol. 216, pp. 1299-303. , · Zbl 1194.34010 · doi:10.1108/09615531211188766
[25] Makinde, O.D. (2007), ”Hermite-Padé approximation approach to thermal criticality for a reactive third-grade liquid in a channel with isothermal walls”, Int. Comm. Heat Mass Transfer, Vol. 34, pp. 870-7. , · Zbl 1356.80073 · doi:10.1108/09615531211188766
[26] Makinde, O.D. (2009), ”On thermal stability of a reactive third-grade fluid in a channel with convective cooling the walls”, Appl. Math. Comp., Vol. 213, pp. 170-6. , · Zbl 1165.76013 · doi:10.1108/09615531211188766
[27] Motsa, S.S., Sibanda, P. and Shateyi, S. (2010a), ”A new spectral-homotopy analysis method for solving a nonlinear second order BVP”, Commun. Nonlin. Sci. Numer. Simul., Vol. 15, pp. 2293-302. , · Zbl 1222.65090 · doi:10.1108/09615531211188766
[28] Motsa, S.S., Sibanda, P., Awad, F.G. and Shateyi, S. (2010b), ”A new spectral-homotopy analysis method for the MHD Jeffery-Hamel problem”, Computers & Fluids, Vol. 39, pp. 1219-25. , · Zbl 1242.76363 · doi:10.1108/09615531211188766
[29] Rajagopal, K.R. (1993), ”Mechanics of non-Newtonian fluids”, Recent Developments in Theoretical Fluid Mechanics, Pitman Res. Notes Math. Ser., Vol. 291, Longman Scientific & Technical, Harlow, pp. 129-62. · Zbl 0818.76003
[30] Roohi, E., Kharazmi, S. and Farjami, Y. (2009), ”Application of the homotopy method for analytical solution of non-Newtonian channel flows”, Phys. Scr., Vol. 9, p. 10. · Zbl 1371.76005
[31] Siddiqui, A.M., Zeb, A., Ghori, Q.K. and Benharbit, A.M. (2008), ”Homotopy perturbation method for heat transfer flow of a third grade fluid between parallel plates”, Chaos Solit. Frac., Vol. 36, pp. 182-92. , · Zbl 1152.80327 · doi:10.1108/09615531211188766
[32] Szeri, A.Z. and Rajagopal, K.R. (1985), ”Flow of a non-Newtonian fluid between heated parallel plates”, Int. J. Nonlin. Mech., Vol. 20, pp. 91-101. , · Zbl 0583.76006 · doi:10.1108/09615531211188766
[33] Tourigny, Y. and Drazin, P.G. (2000), ”The asymptotic behaviour of algebraic approximants”, Proc. R. Soc. Lond. A, Vol. 456, pp. 1117-37. , · Zbl 0971.41007 · doi:10.1108/09615531211188766
[34] Tso, C.P. and Mahulikar, S.P. (1999), ”The role of the Brinkman number in analysing flow transitions in microchannels”, Int. J. Heat Mass Transfer, Vol. 42, pp. 1813-33. , · Zbl 1356.80073 · doi:10.1108/09615531211188766
[35] van Gorder, R.A. and Vajravelu, K. (2009), ”On the selection of auxiliary functions, operators, and convergence control parameters in the application of the homotopy analysis method to nonlinear differential equations: a general approach”, Commun. Nonlin. Sci. Numer. Simul., Vol. 14, pp. 4078-89. , · Zbl 1221.65208 · doi:10.1108/09615531211188766
[36] Liao, S.J. (2003), Beyond Perturbation: Introduction to Homotopy Analysis Method, CRC Press, Boca Raton, FL.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.