×

Local entropy generation rate through convective heat transfer in tubes with wire coil inserts. (English) Zbl 1356.80006


MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76R10 Free convection
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bejan, A. (1982), Entropy Generation Through Heat and Fluid Flow , Wiley, New York, NY.
[2] Bejan, A. (1996), Entropy Generation Minimization , CRC Press, Boca Raton, FL. · Zbl 0864.76001
[3] Bejan, A. and Pfister, P.A. Jr (1980), ”Evaluation of heat transfer augmentation techniques based on their impact on entropy generation”, Lett Heat Mass Transfer , Vol. 7 No. 2, pp. 97-106. · Zbl 1356.80006 · doi:10.1108/HFF-12-2014-0374
[4] Bejan, A. , Tsatsaronis, G. and Moran, M. (1996), Thermal Design and Optimization , John Wiley & Sons, New York, NY. · Zbl 0883.76001
[5] Bergles, A.E. (1985), Techniques to Augment Heat Transfer, Handbook of Heat Transfer Applications Chapter 1, 2nd ed., Mc-Graw Hill, New York, NY.
[6] García, A. , Vicente, P.G. and Viedma, A. (2005), ”Experimental study of heat transfer enhancement with wire coil inserts in laminar-transition-turbulent regimes at different Prandtl numbers”, International Journal of Heat and Mass Transfer , Vol. 48, pp. 4640-4651. , · Zbl 1356.80006 · doi:10.1108/HFF-12-2014-0374
[7] Garcia, A. , Solano, J.P. , Vicente, P.G. and Viedma, A. (2007), ”Enhancement of laminar and transitional flow heat transfer in tubes by means of wire coil inserts”, International Journal of Heat and Mass Transfer , Vol. 50 Nos 15-16, pp. 3176-3189. , · Zbl 1119.80322 · doi:10.1108/HFF-12-2014-0374
[8] Gazzah, M.H. and Belmabrouk, H. (2014), ”Local entropy generation in co-flowing turbulent jets with variable density”, International Journal of Numerical Methods for Heat & Fluid Flow , Vol. 24 No. 8, pp. 1679-1695. , · Zbl 1356.80005 · doi:10.1108/HFF-12-2014-0374
[9] Melinder, A. (2007), ”Thermophysical properties of aqueous solutions used as secondary working fluids”, doctoral thesis, Royal Institute of Technology KTH, Stockholm.
[10] Muñoz-Esparza, D. and Sanmiguel-Rojas, E. (2011), ”Numerical simulations of the laminar flow in pipes with wire coil inserts”, Computers & Fluids , Vol. 44 No. 1, pp. 169-177. , · Zbl 1271.76057 · doi:10.1108/HFF-12-2014-0374
[11] Nag, P.K. and Mukherjee, P. (1987), ”Thermodynamic optimization of convective heat transfer through a duct with constant wall temperature”, International Journal of Heat and Mass Transfer , Vol. 30 No. 2, pp. 401-405. , · Zbl 1356.80006 · doi:10.1108/HFF-12-2014-0374
[12] Oliver, D.R. and Shoji, Y. (1992), ”Heat transfer enhancement in round tubes using three different tube inserts: non-Newtonian liquids”, Transactions of the Institution of Chemical Engineers. Vol. 70 No. 6, pp. 558-564.
[13] Oullette, W.R. and Bejan, A. (1980), ”Conservation of available work (exergy) by using promoters of swirl flow in forced convection heat transfer”, Energy , Vol. 5 No. 7, pp. 587-596. , · Zbl 1356.80006 · doi:10.1108/HFF-12-2014-0374
[14] Oztop, H.F. , Lioua, K. , Naceur, B.M. and Al-Salem, K. (2013), ”Numerical study of three-dimensional combined buoyancy and thermocapillary convection and evaluation of entropy generation”, International Journal of Numerical Methods for Heat & Fluid Flow , Vol. 24 No. 1, pp. 148-168. , · Zbl 1356.76248 · doi:10.1108/HFF-12-2014-0374
[15] Perez-Blanco, H. (1984), ”Irreversibility in heat transfer enhancement, second low aspects thermal design”, 22nd National Heat Transfer Conference and Exhibition, Niagara Falls, NY, pp. 19-26.
[16] Prasad, R.C. and Shen, J. (1993), ”Performance evaluation of convective heat transfer enhancement devices using exergy analysis”, International Journal of Heat and Mass Transfer , Vol. 36 No. 17, pp. 4193-4197. , · Zbl 1356.80006 · doi:10.1108/HFF-12-2014-0374
[17] Satapathy, A.K. (2009), ”Thermodynamic optimization of a coiled tube heat exchanger under constant wall heat flux condition”, Energy , Vol. 34 No. 9, pp. 1122-1128. , · Zbl 1356.80006 · doi:10.1108/HFF-12-2014-0374
[18] Uttarwar, S.B. and Raja Rao, M. (1985), ”Augmentation of laminar flow heat transfer in tubes by means of wire coil inserts”, Transactions of the ASME , Vol. 107 No. 4, pp. 930-935. , · Zbl 1356.80006 · doi:10.1108/HFF-12-2014-0374
[19] Webb, R.L. and Kim, N.H. (2005), Principles of Enhanced Heat Transfer , 2nd ed., Taylor & Francis Group, New York, NY.
[20] Wu, S.Y. , Chen, S.J. , Li, Y.R. and Li, L.J. (2009), ”Numerical investigation of turbulent flow, heat transfer and entropy generation in a helical coiled tube with larger curvature ratio”, Heat Mass Transfer , Vol. 45 No. 5, pp. 569-578. , · Zbl 1356.80006 · doi:10.1108/HFF-12-2014-0374
[21] Yakut, K. and Sahin, B. (2004), ”The effects of vortex characteristics on performance of coiled wire turbulators used for heat transfer augmentation”, Applied Thermal Engineering , Vol. 24 No. 16, pp. 2427-2438. , · Zbl 1356.80006 · doi:10.1108/HFF-12-2014-0374
[22] Zimparov, V. (2001), ”Extended performance evaluation criteria for enhanced heat transfer surfaces: heat transfer through ducts with constant heat flux”, International Journal of Heat and Mass Transfer , Vol. 44 No. 1, pp. 169-180. , · Zbl 0989.76078 · doi:10.1108/HFF-12-2014-0374
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.