×

zbMATH — the first resource for mathematics

Julia: a fresh approach to numerical computing. (English) Zbl 1356.68030

MSC:
68N15 Theory of programming languages
65Y05 Parallel numerical computation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed., SIAM, Philadelphia, PA, 1999. · Zbl 0934.65030
[2] J. Bezanson, Abstraction in Technical Computing, Ph.D. thesis, Massachusetts Institute of Technology, MA, 2015.
[3] J. Bezanson, J. Chen, S. Karpinski, V. B. Shah, and A. Edelman, Array operators using multiple dispatch, in ARRAY’14: Proceedings of ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array Programming, ACM, New York, 2014, pp. 56:56–56:61.
[4] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, Julia: A Fast Dynamic Language for Technical Computing, preprint, , 2012. · Zbl 1356.68030
[5] R. Choy and A. Edelman, Parallel MATLAB: Doing it right, Proc. IEEE, 93 (2005), pp. 331–341.
[7] J. W. Demmel, J. J. Dongarra, B. N. Parlett, W. Kahan, M. Gu, D. S. Bindel, Y. Hida, X. S. Li, O. A. Marques, E. J. Riedy, C. Vomel, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, J. Langou, and S. Tomov, Prospectus for the Next LAPACK and ScaLAPACK Libraries, Tech. report 181, LAPACK Working Note, 2007, .
[8] A. Edelman and B. Sutton, From Random Matrices to Stochastic Operators, J. Statist. Phys., 127 (2007), pp. 1121–1165. · Zbl 1131.15025
[10] C. Gomez, ed., Engineering and Scientific Computing with Scilab, Birkhäuser, Boston, 1999.
[11] G. Hoare, Technicalities: Interactive Scientific Computing #1 of 2: Pythonic Parts, , 2014.
[12] R. Ihaka and R. Gentleman, R: A language for data analysis and graphics, J. Comput. Graph. Statist., 5 (1996), pp. 299–314.
[13] Interactive Supercomputing, Star-p user guide. .
[14] Interactive Supercomputing, Getting Started with Star-P: Taking Your First Test-Drive, , 2006.
[16] W. Kahan, How Futile Are Mindless Assessments of Roundoff in Floating-Point Computation?, , 2006.
[17] M. A. Kaplan and J. D. Ullman, A scheme for the automatic inference of variable types, J. ACM, 27 (1980), pp. 128–145, . · Zbl 0429.68022
[18] C. Lattner and V. Adve, LLVM: A compilation framework for lifelong program analysis and transformation, in Proceedings of the 2004 International Symposium on Code Generation and Optimization (CGO’04), Palo Alto, CA, 2004, ACM, New York, 2004, pp. 75–86.
[19] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, Basic linear algebra subprograms for Fortran usage, ACM Trans. Math. Softw., 5 (1979), pp. 308–323, . · Zbl 0412.65022
[20] M. Lubin and I. Dunning, Computing in Operations Research using Julia, INFORMS J. Comput., 27 (2015), pp. 238–248, ; arXiv preprint: . · Zbl 1331.90001
[24] M. Mohnen, A graph-free approach to data-flow analysis, in Compiler Construction, R. Horspool, ed., Lecture Notes in Comput. Sci. 2304, Springer, Berlin, Heidelberg, 2002, pp. 185–213. · Zbl 1051.68745
[25] M. Murphy, Octave: A free, high-level language for mathematics, Linux J., 1997 (1997), 326884, .
[26] R. Muschevici, A. Potanin, E. Tempero, and J. Noble, Multiple dispatch in practice, in Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Programming Systems Languages and Applications, OOPSLA ’08, ACM, New York, 2008, pp. 563–582, .
[27] A. Noack, Fast and Generic Linear Algebra in Julia, Tech. report, MIT, Cambridge, MA, 2015.
[28] J. Regier, K. Pamnany, R. Giordano, R. Thomas, D. Schlegel, J. McAuliffe, and Prabhat, Learning an Astronomical Catalog of the Visible Universe through Scalable Bayesian Inference, preprint, , 2016.
[30] H. Shen, Interactive notebooks: Sharing the code, Nature Toolbox, 515 (2014), pp. 151–152, .
[31] G. Strang, Introduction to Linear Algebra, Wellesley-Cambridge Press, Wellesley, MA, 2003, . · Zbl 1046.15001
[33] M. Udell, K. Mohan, D. Zeng, J. Hong, S. Diamond, and S. Boyd, Convex optimization in Julia, in SC14 Workshop on High Performance Technical Computing in Dynamic Languages, 2014; preprint, , 2014.
[34] S. van der Walt, S. C. Colbert, and G. Varoquaux, The NumPy Array: A Structure for Efficient Numerical Computation, , 2011.
[35] H. Wickham, ggplot2, .
[36] L. Wilkinson, The Grammar of Graphics (Statistics and Computing), Springer-Verlag, New York, 2005. · Zbl 1080.68107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.