×

Fractional order iterative learning control with randomly varying trial lengths. (English) Zbl 1355.93173

Summary: In this paper, we establish a uniform framework to deal with varying tracking problem in the finite time interval for fractional order system. In order to tracking the reference trajectory associated with nonlinear fractional differential systems with randomly varying trial lengths, we design a new type iterative learning control of the output equation with nonlinear input involving an integral term. As a result, convergence analysis results for several classes of learning laws with local average operator are given. Finally, some examples are given to illustrate our results.

MSC:

93E03 Stochastic systems in control theory (general)
34A08 Fractional ordinary differential equations
93C15 Control/observation systems governed by ordinary differential equations
93C10 Nonlinear systems in control theory
68T05 Learning and adaptive systems in artificial intelligence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Uchiyama, M., Formulation of high-speed motion pattern of a mechanical arm by trial, Trans. Soc. Instrum. Control Eng., 14, 706-712 (1978)
[2] Arimoto, S.; Kawamura, S., Bettering operation of robots by learning, J. Robot. Syst., 1, 123-140 (1984)
[3] Arimoto, S., Mathematical theory of learning with applications to robot control, (Narendra, K. S., Adaptive and Learning Systems: Theory and Applications (1985), Yale University: Yale University New Haven, CT, USA), 379-388
[4] Ahn, H. S.; Chen, Y. Q.; Moore, K. L., Iterative learning controlbrief survey and categorization, IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., 37, 1099-1121 (2007)
[5] Bristow, D.; Tharayil, M.; Alleyne, A. G., A survey of iterative learning control, IEEE Control Syst., 26, 96-114 (2006)
[6] Sugie, T.; Sakai, F., Noise tolerant iterative learning control for a class of continuous-time systems, Automatica, 43, 1766-1771 (2007) · Zbl 1126.93053
[7] Tayebi, A.; Abdul, S.; Zaremba, M. B.; Ye, Y., Robust iterative learning control design via mu-synthesisapplication to a robot manipulator, IEEE/ASME Trans. Mechatron., 13, 608-613 (2008)
[8] Bu, X.; Hou, Z.; Yu, F.; Fu, Z., Iterative learning control for a class of non-linear switched systems, IET Control Theory Appl., 7, 470-481 (2013)
[9] Ruan, X.; Zhao, J., Convergence monotonicity and speed comparison of iterative learning control algorithms for nonlinear systems, IMA J. Math. Control Inf., 30, 473-486 (2013) · Zbl 1279.93052
[10] Tenreiro Machado, J. A.; Kiryakova, V.; Mainardi, F., A poster about the recent hystory of fractional calculus, Fract. Calc. Appl. Anal., 13, 329-334 (2010) · Zbl 1221.26013
[11] Tenreiro Machado, J. A.; Kiryakova, V.; Mainardi, F., A poster about the old hystory of fractional calculus, Fract. Calc. Appl. Anal., 13, 447-454 (2010) · Zbl 1222.26015
[12] Tenreiro Machado, J. A.; Kiryakova, V.; Mainardi, F., Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16, 1140-1153 (2011) · Zbl 1221.26002
[13] Paolo, P., Fractional calculus in statistical physicsthe case of time fractional diffusion equation, Commun. Appl. Ind. Math., e-530, 1-25 (2015)
[14] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier Science B.V. Amsterdam · Zbl 1092.45003
[15] Podlubny, I., Fractional Differential Equations (1999), Academic Press, London · Zbl 0918.34010
[17] Baleanu, D.; Machado, J. A.T.; Luo, A. C.J., Fractional Dynamics and Control (2011), Springer: Springer New York
[18] Tarasov, V. E., Fractional Dynamics: application of Fractional Calculus to Dynamics of Particles, Fields and Media (2011), Springer-HEP: Springer-HEP New York
[19] Zhou, Y., Basic Theory of Fractional Differential Equations (2014), World Scientific: World Scientific Singapore
[20] Hilfer, R., Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys., 284, 339-408 (2002)
[21] Hilfer, R., Application of Fractional Calculus in Physics (2000), World Scientific Publishing Company: World Scientific Publishing Company Singapore · Zbl 0998.26002
[24] N׳Guérékata, G. M., A Cauchy problem for some fractional differential abstract differential equation with nonlocal conditions, Nonlinear Anal., 70, 1873-1876 (2009) · Zbl 1166.34320
[25] Zhou, Y.; Jiao, F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal.: RWA, 11, 4465-4475 (2010) · Zbl 1260.34017
[26] Lin, W., Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332, 709-726 (2007) · Zbl 1113.37016
[27] Bonilla, B.; Rivero, M.; Trujillo, J. J., On systems of linear fractional differential equations with constant coefficients, Appl. Math. Comput., 187, 68-78 (2007) · Zbl 1121.34006
[28] Furati, K. M.; Tatar, N. E., Long time behavior for a nonlinear fractional model, J. Math. Anal. Appl., 332, 441-454 (2007) · Zbl 1121.34055
[29] Li, M.; Wang, J., Finite time stability of fractional delay differential equations, Appl. Math. Lett., 64, 170-176 (2017) · Zbl 1354.34130
[30] Kumar, S.; Sukavanam, N., Approximate controllability of fractional order semilinear systems with bounded delay, J. Differ. Equations, 252, 6163-6174 (2012) · Zbl 1243.93018
[31] de Carvalho-Neto, P. M.; Planas, G., Mild solutions to the time fractional Navier-Stokes equations in \(R^N\), J. Differ. Equations, 259, 2948-2980 (2015) · Zbl 1436.35316
[32] Li, K.; Peng, J.; Jia, J., Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives, J. Funct. Anal., 263, 476-510 (2012) · Zbl 1266.47066
[33] Liu, Z.; Li, X., Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives, SIAM J. Control Optim., 53, 1920-1933 (2015) · Zbl 1326.34019
[34] Wang, J.; Zhou, Y., A class of fractional evolution equations and optimal controls, Nonlinear Anal.: RWA, 12, 262-272 (2011) · Zbl 1214.34010
[35] Wang, J.; Zhou, Y., Analysis of nonlinear fractional control systems in Banach spaces, Nonlinear Anal.: TMA, 74, 5929-5942 (2011) · Zbl 1223.93059
[36] Wang, J.; Zhou, Y., Existence and controllability results for fractional semilinear differential inclusions, Nonlinear Anal. :RWA, 12, 3642-3653 (2011) · Zbl 1231.34108
[37] Wang, J.; Zhou, Y.; Fečkan, M., On recent developments in the theory of boundary value problems for impulsive fractional differential equations, Comput. Math. Appl., 64, 3008-3020 (2012) · Zbl 1268.34032
[38] Wang, J.; Fečkan, M.; Zhou, Y., Ulam׳s type stability of impulsive ordinary differential equations, J. Math. Anal. Appl., 395, 258-264 (2012) · Zbl 1254.34022
[39] Wang, J.; Fečkan, M.; Zhou, Y., On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equations, 8, 345-362 (2011) · Zbl 1264.34014
[40] Wang, J.; Zhou, Y.; Fečkan, M., Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comp. Math. Appl., 64, 3389-3405 (2012) · Zbl 1268.34033
[41] Wang, J.; Li, X.; Fečkan, M.; Zhou, Y., Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Appl. Anal., 92, 2241-2253 (2013) · Zbl 1285.26013
[42] Wang, J.; Zhou, Y.; Wei, W., Fractional Schrödinger equations with potential and optimal controls, Nonlinear Anal. :RWA, 13, 2755-2766 (2012) · Zbl 1253.35205
[43] Wang, J.; Zhang, Y., On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives, Appl. Math. Lett., 39, 85-90 (2015) · Zbl 1319.34017
[44] Wang, J.; Ibrahim, A. G.; Fečkan, M., Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on banach spaces, Appl. Math. Comput., 257, 103-118 (2015) · Zbl 1338.34027
[45] Wang, J.; Fečkan, M.; Zhou, Y., A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19, 806-831 (2016) · Zbl 1344.35169
[46] Adjabi, Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T., On Cauchy problems with Caputo Hadamard fractional derivatives, J. Comput. Anal. Appl., 21, 661-681 (2016) · Zbl 1336.34010
[47] Hashemi, M. S.; Baleanu, D., Numerical approximation of higher-order time-fractional telegraph equation by using a combination of a geometric approach and method of line, J. Comput. Phys., 316, 10-20 (2016) · Zbl 1349.65396
[48] Suganya, S.; Baleanu, D.; Arjunan, M. M., A note on fractional neutral integro-differential inclusions with state-dependent delay in Banach spaces, J. Comput. Anal. Appl., 20, 1302-1317 (2016) · Zbl 1336.34089
[51] Bragdi, M.; Debbouche, A.; Baleanu, D., Existence of solutions for fractional differential inclusions with separated boundary conditions in Banach space, Adv. Math. Phys., 2013, 1-5 (2013) · Zbl 1272.34007
[52] shahri, E. S.A.; Alfi, A.; Machado, J. A.T., An extension of estimation of domain of attraction for fractional order linear system subject to saturation control, Appl. Math. Lett., 47, 26-34 (2015) · Zbl 1319.93059
[53] Sabatier, J.; Agrawal, O. P.; Machado, J. A.T., Advances in Fractional Calculus (2007), Springer, Amsterdam · Zbl 1116.00014
[54] Liu, S.; Wang, J.; Wei, W., Iterative learning control based on noninstantaneous impulsive fractional order system, J. Vib. Control, 22, 1972-1979 (2016) · Zbl 1365.34015
[55] Liu, S.; Wang, J., Analysis of iterative learning control with high order internal models for fractional differential equations, J. Vib. Control (2016)
[56] Yu, X.; Debbouche, A.; Wang, J., On the iterative learning control of fractional impulsive evolution equations in banach spaces, Math. Methods Appl. Sci. (2015)
[57] Li, Y.; Jiang, W., Fractional order nonlinear systems with delay in iterative learning control, Appl. Math. Comput., 257, 546-552 (2015) · Zbl 1338.93179
[58] Xin, R.; Wang, C.; Liu, X.; Li, M.; Bai, D., Robust fractional order proportional integral control for large time-delay system, Appl. Mech. Mater., 716, 1614-1619 (2015)
[60] Li, X. F.; Xu, J. X.; Huang, D., An iterative learning control approach for linear systems with randomly varying trial lengths, IEEE Trans. Autom. Control, 59, 1954-1960 (2014) · Zbl 1360.93796
[61] Li, X. F.; Xu, J. X.; Huang, D., Iterative learning control for nonlinear dynamic systems with randomly varying trial lengths, Int. J. Adapt. Control Signal Process., 29, 1341-1353 (2015) · Zbl 1333.93274
[62] Liu, S.; Debbouche, A.; Wang, J., On the iterative learning control for stochastic impulsive differential equations with randomly varying trial lengths, J. Comput. Appl. Math., 312, 47-57 (2017) · Zbl 1351.65005
[63] Park, K. H., An average operator-based PD-type iterative learning control for variable initial state error, IEEE Trans. Autom. Control, 50, 865-869 (2005) · Zbl 1365.93557
[65] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives Theory and Applications (1993), Gordon and Breach Science Publishers, London · Zbl 0818.26003
[66] Medved, M., A new approach to an analysis of henry type integral inequalities and their bihari type versions, J. Math. Anal. Appl., 214, 349-366 (1997) · Zbl 0893.26006
[67] Durrett, R., Probability: theory and Examples (2010), Cambridge University Press, New York · Zbl 1202.60001
[68] Prudnikov, A. P.; Brychkov, Y. A.; Marichev, O. I., Integral and Series, Elementary Functions, 1 (1981), Nauka: Nauka Moscow · Zbl 0511.00044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.