×

zbMATH — the first resource for mathematics

Rapid innovation diffusion in social networks. (English) Zbl 1355.91067
Summary: Social and technological innovations often spread through social networks as people respond to what their neighbors are doing. Previous research has identified specific network structures, such as local clustering, that promote rapid diffusion. Here we derive bounds that are independent of network structure and size, such that diffusion is fast whenever the payoff gain from the innovation is sufficiently high and the agents’responses are sufficiently noisy. We also provide a simple method for computing an upper bound on the expected time it takes for the innovation to become established in any finite network. For example, if agents choose log-linear responses to what their neighbors are doing, it takes on average less than 80 revision periods for the innovation to diffuse widely in any network, provided that the error rate is at least 5% and the payoff gain (relative to the status quo) is at least 150%. Qualitatively similar results hold for other smoothed best-response functions and populations that experience heterogeneous payoff shocks.

MSC:
91D30 Social networks; opinion dynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Sociometry 20 pp 253– (1957) · doi:10.2307/2785979
[2] 25 pp 501– (1957) · doi:10.2307/1905380
[3] 80 pp 1– (2006) · doi:10.1016/j.jdeveco.2005.01.002
[4] The American economic review 91 pp 559– (2001) · doi:10.1257/aer.91.3.559
[5] The journal of economic perspectives : a journal of the American Economic Association 22 pp 189– (2008) · doi:10.1257/jep.22.3.189
[6] The Review of Economic Studies 65 (3) pp 595– (1998) · Zbl 0910.90103 · doi:10.1111/1467-937X.00059
[7] 5 pp 387– (1993) · Zbl 0797.90123 · doi:10.1006/game.1993.1023
[8] 11 pp 111– (1995) · Zbl 0840.90140 · doi:10.1006/game.1995.1046
[9] The Review of Economic Studies 67 (1) pp 57– (2000) · Zbl 0960.91016 · doi:10.1111/1467-937X.00121
[10] Watts, PNAS 99 (9) pp 5766– (2002) · Zbl 1022.90001 · doi:10.1073/pnas.082090499
[11] 34 pp 441– (2007) · doi:10.1086/518527
[12] The American economic review 97 pp 92– (2007) · doi:10.1257/aer.97.2.92
[13] AM ECON J MICROECON 2 pp 112– (2010) · doi:10.1257/mic.2.1.112
[14] PNAS 107 (47) pp 20196– (2010) · doi:10.1073/pnas.1004098107
[15] 61 pp 1047– (1993) · Zbl 0802.90143 · doi:10.2307/2951493
[16] INT J GAME THEORY 30 pp 107– (2001) · Zbl 1060.91024 · doi:10.1007/s001820100067
[17] INT GAME THEORY REV 5 pp 193– (2003) · Zbl 1086.91018 · doi:10.1142/S021919890300101X
[18] INT J GAME THEORY 34 pp 371– (2006) · Zbl 1178.91027 · doi:10.1007/s00182-006-0026-5
[19] 80 pp 39– (2013) · Zbl 1281.91026 · doi:10.1016/j.geb.2013.02.004
[20] 10 pp 6– (1995) · Zbl 0832.90126 · doi:10.1006/game.1995.1023
[21] 61 pp 29– (1993) · Zbl 0776.90095 · doi:10.2307/2951777
[22] 61 pp 57– (1993) · Zbl 0773.90101 · doi:10.2307/2951778
[23] 44 pp 251– (2003) · Zbl 1056.91011 · doi:10.1016/S0899-8256(02)00554-7
[24] ANN ECON SOC MEAS 5 pp 363– (1976)
[25] HANDB ECON 1 pp 3297– (2001)
[26] PNAS 108 (Supplement_4) pp 21285– (2011) · doi:10.1073/pnas.1100973108
[27] 19 pp 180– (1997) · Zbl 0882.90133 · doi:10.1006/game.1997.0555
[28] Liljeros, Nature 411 (6840) pp 907– (2001) · doi:10.1038/35082140
[29] Barabasi, Science 286 (5439) pp 509– (1999) · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[30] 113 pp 286– (2003) · Zbl 1158.91307 · doi:10.1016/S0022-0531(03)00069-3
[31] 41 pp 265– (2002) · Zbl 1037.91017 · doi:10.1016/S0899-8256(02)00504-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.